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Abstract: The present work addresses the problem of optimal sensor placement (OSP) for a multi-span concrete bridge,
aiming to maximize the informational value of structural health monitoring (SHM) data so that the structural dynamic
behavior can be fully characterized with a reduced number of sensors, thereby yielding direct benefits in terms of
equipment installation and maintenance costs. To this end, eight distinct optimal sensor placement techniques are
examined. Six of these are individual sensor ranking algorithms, whereas the remaining two exploit metrics that evaluate
sensor interaction to determine their relevance. Within the first category of algorithms, an enhanced ranking approach
based on local maxima is investigated as a promising alternative to improve placement performance and estimate the
required number of optimal sensors. The effectiveness of this method is then compared against the second category of
algorithms, which are known for their better performance. Extensive experimental data from a well-known benchmark
bridge structure are employed to validate this approach, enabling the exploration of a data-driven solution to the OSP
problem. By analyzing the advantages and limitations of each algorithm, a modal-based multi-criteria optimization is
ultimately applied to drive the selection of the final best sensor configuration for the investigated bridge across multiple
scenarios.
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Introduction

Structural health monitoring (SHM) of bridges is a criti-
cal task to ensure the safety and longevity of these vital
infrastructures. By continuously tracking and analyzing data
on the structural performance of a bridge, SHM systems
can detect potential damage, degradation phenomena, or
anomalous behaviors early, before they lead to irreversible
consequences that threaten the normal infrastructure oper-
ation. Recent catastrophic failures, such as the Morandi
Bridge in Italy (2018), the Whaley Bridge Dam in the United
Kingdom (2019), and the Highway Bridge in China (2024),
have highlighted the risks posed by aging infrastructure and
the need for more rigorous condition-based maintenance
practices. In this context, regular monitoring through sensor
network technologies is key to overcoming the limitations
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of current time-consuming and intermittent inspection rou-
tines and to promptly assessing the structural conditions of
bridges to make timely informed decisions, thus contributing
to a wiser allocation of resources.

Implementing SHM systems for bridges comes with sev-
eral challenges. Beyond budget constraints, durability issues,
and potential difficulties related to the complexity and acces-
sibility of the investigated structures, there are problems
associated with the generation of increasingly large volumes
of data that can be cumbersome to manage in the long run.
Hence, a core aspect of SHM is the strategic placement of
sensors, which plays a crucial role in the quantity, quality,
and reliability of collected data.1 This process is known
as Optimal Sensor Placement (OSP). In general terms, the
OSP problem in SHM seeks to determine the most effective
locations where sensors should be installed across a structure
to maximize monitoring information while minimizing costs
and data redundancy.2 Indeed, since deploying sensors is
expensive, both in terms of hardware and maintenance, and
damage can occur in unpredictable locations, not only it
is necessary to optimize the number of sensors but also to
place them in such a way that they can capture relevant data
across a wide range of possible damage scenarios (DSs).3

Conversely, improper sensor placement can lead to unreli-
able data and important changes in the structural response
may go unnoticed.4,5
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Various optimization techniques have been proposed in
the literature to address the OSP problem, first focus-
ing on aerospace and mechanical applications,6–9 and then
extending the scope to the civil engineering field.10–16 These
techniques aim to find a trade-off between cost, coverage,
and sensitivity, ensuring that the SHM system delivers accu-
rate and actionable data for timely maintenance and repairs.
Among them, heuristic algorithms represent the most prac-
tical approach to finding near-optimal solutions within a
reasonable timeframe, though they do not guarantee a global
optimum. They are particularly suited when the search space
is large and traditional optimization methods involve high
computational effort.17,18 Heuristics place sensors iteratively,
assessing step-by-step the contribution of each candidate
location to the mode identifiability through the maximiza-
tion of a specific metric (typically a function of the mode
shape matrix). The process continues until a performance
threshold is satisfied or a predefined number of sensors pro-
viding adequate information for the dynamic identification
of the structural behavior is reached. Yet, despite the numer-
ous advantages, heuristics—in their basic version—present
inherent limitations that ultimately hinder their successful
application: (1) they are often prone to cluster the sensors
in a few regions; (2) none of the techniques gives a priori
information about the optimal number of sensors to use;
(3) the final positioning solutions provided are greatly influ-
enced by the number and characteristics of the selected target
modes, namely the most important modes from a dynamic
standpoint for the problem at hand; (4) depending on the
adopted metric, sub-optimal solutions can vary significantly.
On the other hand, a well-established class of heuristic
methods achieves optimized placement in a single iteration
by ranking sensors according to specific metrics that assess
them individually, without considering their interaction and
distribution. However, while this approach further enhances
computational efficiency, it also increases the likelihood of
sensor clustering. Tackling these drawbacks is mandatory to
leverage the full potential of heuristics for OSP. In,10 one
of these individual sensor ranking methods was improved
by sorting the local maxima of the metric function rather
than its maximum values. This strategy, which has received
little attention in subsequent literature, not only overcomes
the clustering issue but also provides a rapid approach to
determining the optimal number of sensors required for a
given set of target modes.

Rooted in the research framework outlined above, the
present work explores eight distinct OSP techniques for the
health monitoring of multi-span bridges. Six of them are
individual sensor ranking algorithms, whereas the other two
rely on metrics that assess sensor interaction to determine
their relevance. By analyzing the former class of algorithms,
a promising alternative ranking solution based on local max-
ima is explored to enhance the final placement performance
and provide an estimate of the required number of sensors.
This solution is then compared with the second class of
algorithms, known for their superior performance. Existing
studies in the literature typically focus on a limited number of
methods, often restricting their analysis to a straightforward
comparison of performance metrics. Instead, the present

study moves forward by conducting an in-depth assessment
of the advantages and limitations of each algorithm and
proposing a modal-based multi-criteria optimization. This
approach allows identifying the best possible sensor configu-
ration—among all potential sub-optimal candidates derived
from the analyzed techniques—which ensures the retention
of the most important modal information about the sys-
tem under investigation, even in the presence of changing
structural conditions. Data from a real well-known bridge
structure are employed to validate this novel approach,
enabling the exploration of an emerging data-driven solu-
tion to the OSP problem. This solution aims to overcome
the limitations of the traditional model-based approach.
Although more experimentally intensive, it avoids the typical
uncertainties and potential sources of error inherent to gen-
erating a reliable numerical model of the structure. Instead,
it directly assesses the actual response of the bridge under
operating conditions. The selected experimental benchmark
consists of 108-channel datasets acquired under varying
structural scenarios via multiple setups through a dense
sensor network deployed on top of the bridge deck. To the
best of the authors’ knowledge, there are no works in the
literature addressing the OSP problem for bridge monitoring
with such an extensive and granular set of DOFs measured
under changing structural configurations. Indeed, the higher
the spatial density of the SHM system, the greater the moni-
toring fidelity, and hence the more accurate the evaluation of
the algorithms’ performance when minimizing the number
of sensors. The reminder of the paper is organized as follows.
Section 2 provides a concise overview of the most recurrent
OSP techniques employed for bridge monitoring. Section 3
presents a detailed analysis of the performance metrics of
the investigated algorithms, resorting to analytical examples
of beam-like systems under different boundary conditions.
Section 4 investigates the goodness of the analysed OSP algo-
rithms through a modal-based multi-criteria optimization
approach with application to a real-world case study and
explores alternative ranking solutions to guide the selection
of the final best sensor placement among different candidate
configurations. Finally, Section 5 summarizes the main con-
clusions drawn from this study.

State-of-the-Art OSP Techniques

The OSP task for vibration monitoring can be mathe-
matically expressed as a combinatorial discrete constrained
black-box optimization problem. It involves the definition of
s optimal sensor locations and d acquisition directions for
any location, out of a set of n feasible candidates, to identify
m target modes.19 Being the set of candidate solutions finite
and pre-determined, it can theoretically be solved by brute
force, testing all the possible combinations in the search
space. However, this is not practically feasible in real-life
cases due to limited computational capability. By contrast,
heuristic procedures can be employed to explore the search
space partially, thus drastically reducing the computational
burden, and to find a near-optimal solution that should be
sufficiently close to the actual optimum.3 In this section,
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the most recurrent heuristic algorithms available in the lit-
erature and suitable for data-driven OSP in the context of
bridge monitoring are presented by briefly recalling their
basic formulations and working principles. Specifically, eight
heuristic algorithms are investigated: (i) non-optimal driving
point (NODP); (ii) eigenvalue vector product (EVP); (iii)
mode shape summation plot (MSSP); (iv) average drive point
residue (ADPR); (v) weighted average drive point residue
(WDPR); (vi) variance method (VM); (vii) QR decomposi-
tion (QRD); and (viii) effective independence (EfI).

The NODP algorithm aims to avoid placing sensors in
near-nodal areas of the mode shapes, where signals may be
weak or noisy.20 To achieve this, the algorithm selects sensor
locations based on the largest minimum mode shape dis-
placement across the target modes, maximizing the following
metric:

NODPi = min
j

∣∣�ij

∣∣ (1)

While this method prevents the selection of points where
motion is minimal, it does not guarantee the selection of
high-response locations. In contrast, the EVP and the MSSP
algorithms21,22 aim to place sensors at locations where the
target mode shapes exhibit the largest contributions by max-
imizing the following metrics, respectively,

EVPi =
m∏

j=1

∣∣�ij

∣∣ (2)

MSSPi =
m∑

j=1

∣∣�ij

∣∣ (3)

Through this approach, the methods analyse the
combined effect of multiple mode shapes by selecting
measurement points that ensure significant displacements
across more modes. At the same time, they reduce the
likelihood of selecting near-nodal areas for certain modes,
as these locations would not contribute to increasing the
MSSP and could even reduce the EVP to nearly zero.
The maximization of the modal displacements across the
target modes is also pursued by the ADPR and the WDPR
methods.23 Both methods rely on the estimation of the
driving point residue (DPR) matrix, as follows:

DPR = � ⊗ �Λ−1 (4)

where � is the diagonal matrix of angular frequencies and
⊗ is the term-by-term matrix multiplier. The ADPR method
maximizes the average DPR across multiple modes:

ADPRi = 1
m

m∑

j=1

DPRij (5)

Since this approach may overlook localized low responses
for specific target modes, the WDPR maximizes the former,
weighted by the minimum absolute value of the DPR across
the rows. This prevents the selection of nodes in low response
regions.

The VM aims to select measurement points that ensure
strong signal strength and high-quality reconstruction of
mode shapes at unmeasured locations.10 This is achieved by

maximizing the ratio between the diagonal terms cii of the
covariance matrix of the transpose of the mode shape matrix
and the sum of the corresponding off-diagonal terms.

VMi = cii∑n
j=1,j �=i cij

(6)

While the off-diagonal terms attempt to account for sen-
sor interactions that were overlooked by previous methods,
the VM still suffers from sensor clustering, similar to previ-
ous algorithms.

The last two methods, namely the QRD and the EfI,
fully account for the interaction of the sensors. The QRD
method24 applies the well-known QRD to the mode shape
matrix as follows:

�TP = QR (7)

where Q is an orthogonal matrix, R is an upper triangu-
lar matrix with decreasing diagonal elements, and P is a
permutation matrix whose first m columns identify the best
locations ranked by the method. This makes it a single-
iteration method as well. The selected locations provide
linearly independent mode shapes; however, a limitation of
the method is that the number of best locations must be equal
to the number of target modes.

Finally, the EfI method25 aims to ensure high mode
identifiability by maximizing the determinant of the Fisher
information matrix (FIM). At each iteration, the FIM is
computed by partitioning the target modal matrix to the s
retained sensor locations:

FIM = �T
sm�sm (8)

Then, the method rejects the location with the lowest
value in the effective independence distribution:

Ed = ([�sm� ⊗ �sm�]λ−1)1 (9)

where � and λ are the eigenvectors and eigenvalues of the
FIM, respectively, and 1 is the unitary column vector.

Analysis of Current OSP Algorithms through
Analytical Data

To thoroughly investigate the effectiveness of the aforemen-
tioned heuristics and highlight the drawbacks that most
hinder the wide applicability of current OSP techniques,
applications to four analytical examples are showcased.
These examples concern a single-span concrete beam with a
hollow cross-section subjected to different boundary condi-
tions, as illustrated in Fig. 1: (1) simply supported concrete
beam; (2) clamped-supported concrete beam; (3) clamped-
clamped concrete beam; and (4) cantilever concrete beam.
In each case, the beam features a length of 30 m, a cross-
section with a 6 m base, 1 m height, and 0.35 m thickness,
a Young’s modulus of 30 GPa, and a density of 2500 kg/m3.
The primary goal of this analysis is to assess the performance
of single-iteration individual sensor ranking methods (EVP,
MSSP, ADPR, WDPR, NODP, and VM) in comparison
to heuristics that account for sensor interaction (EfI and
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QRD). The aim is to identify their limitations and pro-
pose potential solutions, focusing particularly on mitigating
clustering in the final sensor locations and determining the
optimal number of sensors. To ensure consistency across
all boundary conditions, the number of potential sensor
locations is set to 100 candidates evenly distributed along
the beam length, while the number of target modes varies
from a minimum of three to a maximum of seven modes.
For simplicity, the analyses are confined to bending modes
in the vertical plane (Fig. 2), and only uniaxial sensors are
considered.

Figs. 3 to 8 show, for each instance, the spatial variation
of the metrics considered by the individual sensor ranking
methods and the optimized locations computed using a
standard approach, in which the final number of sensors
is set equal to the number of target modes. It is observed

that, except for the NODP and WDPR algorithms, most
heuristics tend to cluster sensors within specific regions of
the beam. This well-known limitation is likely exacerbated
by the large number of considered candidates and could be
mitigated by an initial filtering of possible locations. For
more complex structures, this may require a high level of
knowledge of their dynamic behavior. Clustering can lead
to uneven monitoring coverage and reduced effectiveness
of the sensor network. In contrast, a well-distributed sen-
sor network increases the likelihood of detecting localized
anomalies compared to a clustered arrangement.

To solve the problem of sensor clustering and enhance
spatial coverage, the local maxima of the metrics optimized
by each algorithm are selected as final sensor locations, as
shown in Figs 9 to 14. Apart from the ADPR algorithm,
this approach enables better distribution of the sensors

Figure 1. Geometry of the beam structures used in the analytical examples

Figure 2. First five mode shapes of the investigated concrete beams
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Figure 3. Spatial variation of the EVP function with identification of the optimal sensor locations

Figure 4. Spatial variation of the MSSP function with identification of the optimal sensor locations

throughout the structure, avoiding blind spots or areas with
insufficient data coverage to adequately capture the modal
behavior of the system across different configurations. While
in the standard approach, the number of sensors is equal
to the target modes, this approach determines a variable

number of sensors corresponding to the local maxima of
the metric functions, providing an estimate of the optimal
number of sensors to install.

For better visualization of the results, Fig. 15 illustrates
the final sensor placements derived from the investigated
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Figure 5. Spatial variation of the ADPR function with identification of the optimal sensor locations

Figure 6. Spatial variation of the WDPR function with identification of the optimal sensor locations

OSP algorithms, enhanced by the local maxima selection,
for the simply supported beam in cases of 3, 4, or 5 tar-
get modes. It is noted that many locations, that is, local
maxima in the metric functions, are commonly identified
as optimal by different methods, particularly MSSP, EVP,

NODP, and WDPR. As expected from their formulations,
these methods tend to reject near-nodal regions of the tar-
get modes, such as the mid-span, even though this point
exhibits the maximum modal displacement for other target
modes. Regarding the other algorithms, the ADPR appears
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Figure 7. Spatial variation of the NODP function with identification of the optimal sensor locations

Figure 8. Spatial variation of the VM function with identification of the optimal sensor locations

inconclusive, while the VM method yields a solution closely
aligned with those provided by the QRD and EfI methods,
presented here as benchmarks for the enhanced approaches.
It is worth stressing that the local maxima approach gen-
erally identifies more necessary sensors than the number of

target modes, which has significant implications in terms of
both the cost and complexity of the SHM sensor network.
An increased number of sensors can lead to higher expenses
for installation, maintenance, and data management. The
added complexity may also require more sophisticated data
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Figure 9. Spatial variation of the EVP function with identification of the optimal sensor locations based on local maxima

Figure 10. Spatial variation of the MSSP function with identification of the optimal sensor locations based on local
maxima

analysis and integration methods to effectively process and
interpret the sensor data. Notably, for this specific case,
the number of required sensors increases significantly when
selecting five or more target modes, as shown in Table 1.

This is because incorporating additional modes into the

metric functions produces more local optima. Among all the

analyzed heuristics, the VM method appears to be the only
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Figure 11. Spatial variation of the ADPR function with identification of the optimal sensor locations based on local
maxima

Figure 12. Spatial variation of the WDPR function with identification of the optimal sensor locations based on local
maxima

one able to provide an optimized network with a minimum
number of sensors.

To further assess the performance of the algorithms, the
average values of the off-diagonal terms of the AutoMAC
matrix, obtained by comparing the mode shapes estimated
through the reduced sensor configurations derived from each

algorithm, are evaluated. It is well known that high val-
ues of the off-diagonal AutoMAC terms indicate similarity
or overlap between modal vectors, which can hinder the
accurate identification of the structure’s dynamic behavior.
Conversely, off-diagonal MAC terms close to zero indi-
cate orthogonality and linear independence between mode
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Figure 13. Spatial variation of the NODP function with identification of the optimal sensor locations based on local
maxima

Figure 14. Spatial variation of the VM function with identification of the optimal sensor locations based on local maxima

shapes. Maintaining low off-diagonal values is particu-
larly important for SHM applications, where the ability to
distinguish between modes directly impacts the precision of
damage detection and dynamic response predictions. As an

example, Table 2 reports the average AutoMAC off-diagonal
terms for the simply supported case. The results demonstrate
that by employing the local maxima approach, all single-
iteration heuristics—except for the ADPR algorithm—yield
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Figure 15. Best sensor placements achieved by the investigated heuristics with an increasing number of target modes
(case study: simply supported beam)

Table 1. Number of optimal sensor locations (local maxima) in the investigated metric functions
modes (case study: simply supported beam)

Modes MSSP EVP VM NODP ADPR WDPR

3 4 4 3 4 1 4
4 6 6 4 6 1 6
5 10 10 5 10 1 10
6 10 12 6 12 1 12
7 10 18 7 18 1 18

sensor configurations that ensure the accurate identification
of linearly independent mode shapes, significantly enhancing
the performance of the standard approach. This is evidenced
by the fact that the average value of the off-diagonal MAC
terms is consistently close to zero, even when the number
of target modes increases. Except for ADPR, VM exhibits
a slightly higher average of the off-diagonal terms; how-
ever, this method requires fewer sensors to achieve a similar
performance. Overall, the local optima approach improves

the performance of the individual sensor ranking methods,
making them comparable to the EfI and QRD methods.
Both of these latter methods show excellent performance
while requiring, in some cases, only half the sensors used by
the competing algorithms, confirming their robustness and
reliability in the context of OSP.

The findings discussed above are further corroborated
by examining the CrossMAC values between the complete
mode shape matrix and the expanded mode shape matrix
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reconstructed through spline interpolation based on the
optimal sensor locations, as shown in Table 3 for the same
instance. In this case, diagonal terms as close as possible

to one are desired, as they indicate a strong correspon-
dence between the modal vectors estimated by the extensive
sensor network and those estimated by the reduced one,

Table 2. Average AutoMAC off-diagonal terms for the simply supported beam

No. target modes Single-iteration heuristics

Standard approach Local maxima approach

MSSP EVP VM NODP ADPR WDPR MSSP EVP VM NODP ADPR WDPR QRD EfI

3 0.27 0.27 0.67 0.27 0.34 0.27 0.01 0.00 0.02 ∼0.0 0.67 ∼0.0 ∼0.0 ∼0.0
4 0.25 0.25 0.74 0.12 0.25 0.25 0.01 0.01 0.02 0.01 0.75 ∼0.0 ∼0.0 ∼0.0
5 0.34 0.34 0.78 0.33 0.37 0.18 0.01 0.01 0.01 0.01 0.80 ∼0.0 ∼0.0 ∼0.0
6 0.33 0.33 0.79 0.11 0.33 0.12 ∼0.0 0.01 0.01 0.01 0.83 ∼0.0 ∼0.0 ∼0.0
7 0.37 0.37 0.77 0.11 0.39 0.20 0.01 0.01 0.01 0.01 0.86 ∼0.0 ∼0.0 ∼0.0

Table 3. CrossMAC values between reconstructed and complete mode shapes for the simply supported beam

MSSP EVP VM NODP ADPR WDPR QRD EfI

3 modes
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 0.98 1.00 0.00 1.00 0.98 0.98
0.97 0.97 0.97 0.96 0.00 0.97 0.98 0.98

4 modes
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00
1.00 1.00 0.94 0.99 0.00 1.00 0.96 0.96
0.98 0.98 0.97 0.97 0.00 0.98 0.98 0.98

5 modes
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00
1.00 1.00 0.99 1.00 0.00 1.00 0.99 0.99
1.00 1.00 0.94 0.99 0.00 1.00 0.94 0.94
0.98 0.98 0.96 0.98 0.00 0.99 0.98 0.98

6 modes
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00
1.00 1.00 0.97 1.00 0.00 1.00 0.99 0.98
0.99 0.99 0.95 0.99 0.00 1.00 0.92 0.93
0.98 0.99 0.92 0.98 0.00 0.99 0.98 0.98

7 modes
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00
1.00 1.00 0.99 1.00 0.00 1.00 1.00 1.00
0.99 1.00 0.96 1.00 0.00 1.00 0.98 0.98
0.98 1.00 0.96 0.99 0.00 1.00 0.90 0.91
0.99 0.99 0.86 0.98 0.00 0.99 0.98 0.98
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suggesting that the optimized sensor locations provide a
reliable reconstruction of the mode shapes at unmeasured
nodes. As observed, the diagonal values of CrossMAC
remain close to one for all heuristics except for the ADPR
algorithm. This indicates that the reduced sensor configu-
rations derived from the analyzed techniques successfully
capture the original mode shapes with minimal loss of infor-
mation. Moreover, their performance is not compromised
as the number of target modes increases, demonstrating
the robustness and adaptability of these heuristics. Similar
observations apply to the other instances, which are omitted
here for brevity.

Application to a Multi-Span Concrete Bridge

The different OSP techniques analyzed in the previous sec-
tion are applied to a real large-scale bridge, specifically
the Z24. The choice of such a well-known experimental
benchmark as a testbed lies in the possibility to exploit
an unprecedented number of vibration signatures from a
real-world case study under both normal and abnormal
conditions. This enables the assessment of the applicability
and reliability of established OSP algorithms in engineering
practice.

Description of the experimental benchmark

The Z24 bridge, built in Switzerland in the 1960s, was an
overpass of the A1 Bern–Zurich highway linking the villages
of Koppigen and Utzenstorf. It was a typical continuous
post-tensioned concrete girder bridge with a total length
of 58 m, subdivided into three spans of approximately 14,
30, and 14 m, respectively (Fig. 16). To protect the anchor
heads, both ends of the deck were extended by an additional
2.7 m each. From a static standpoint, the bridge consisted

of a two-cell box girder superstructure rigidly supported by
two intermediate concrete diaphragms as main piers, while
the abutments rested on triplets of columns pinned at both
ends. Supports were rotated with respect to the longitudinal
axis of the deck, yielding a slightly oblique bridge. The
condition of the infrastructure was relatively good, yet the
construction of a new railway track adjacent to the highway
made its demolition and subsequent replacement necessary.
Before this occurred, within the framework of the SIMCES
research project,26 the structure was subjected to progressive
damage tests to demonstrate the possibility of identifying
structural damage from changes in the dynamic characteris-
tics estimated from the bridge vibration measurements prior
to and after each damage scenario (DS). To this end, forced
and ambient input excitations were employed to collect the
response of a very large number of degrees of freedom (291
DOFs in total) through a dense sensor network of cabled
accelerometers. The measurement points were distributed
both on top of the bridge deck (along three parallel lines of
45 points each) and on the main pillars (along two parallel
lines of 8 points each), as shown in Fig. 16. Nine setups
and three reference channels were necessary to collect the
response from such a dense measurement grid.

For each test, output vibration signals were acquired
for about 11 minutes with a sampling rate of 100 Hz
to capture all frequencies of interest for the bridge. A
detailed description of the entire experimental campaign,
along with the sequence and extent of the various DSs,
is provided in.27–29 For the purpose of this work, one
reference scenario (RS) representative of the undamaged
condition of the bridge and two DSs corresponding to real-
istic and relevant cases of structural damage are considered,
namely: (1) settlement of the Koppigen pier foundation at
44 m (DS1), and (2) failure of the concrete hinges at the
abutments (DS2). Possible variations induced by changing

Figure 16. Geometry of the Z24 bridge and distribution of measurement points for the AVT (adapted from12)
(Dimension in meters)
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ambient parameters—commonly considered in long-term
bridge monitoring—are not accounted for in this study, as
the analyzed data were collected from multi-setup ambient
vibration tests carried out over a short time period. As a
result, environmental adjustments were not required.

Modal feature extraction for different DSs

To characterize the dynamics of the bridge, modal param-
eters were extracted by processing the nodal responses
experimentally collected from the central array of sensors
deployed on top of the deck using the Enhanced Fre-
quency Domain Decomposition algorithm implemented in
ARTeMIS software. A total of 108 channels (45 in the

vertical direction, 45 in the transversal direction, and 18
in the longitudinal direction) was considered to realistically
reproduce sensor networks of high spatial density.

Five vibration modes were identified within the frequency
range of 0–15 Hz (Fig. 17): the first mode corresponds to
the fundamental bending mode of the bridge, the second is
a transverse mode with dominant lateral components, the
third and fourth are asymmetric double-curvature bending
modes coupled with torsional motions, and the fifth is a
pure symmetric bending mode with greater modal deflec-
tions at the side spans. Fig. 18 shows the configuration of
the estimated experimental modes of the Z24 bridge, along
with their frequencies (f ) and damping ratios (ξ ) for the

Figure 17. Singular value decomposition of spectral densities obtained from the 108-channel sensor configuration

f1 = 3.88 Hz; � = 1.12% f2 = 5.02 Hz; � = 1.47% f3 = 9.86 Hz; � = 0.79%

f4 = 10.28 Hz; � = 1.13% f5 = 12.69 Hz; � = 2.09%

Figure 18. Main vibration modes of the Z24 bridge identified with the full sensor configuration (108 channels) in the
reference scenario
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RS. Note that all vertical modes show an increasing num-
ber of inflection points as well as a growing amount of
modal complexity, making them progressively more sensi-
tive to deflection changes originating from local damage
phenomena.

The modal feature extraction process with the full 108-
channel dataset is repeated for all investigated structural
conditions, namely RS, DS1, and DS2, assuming all DSs as
equally possible. The outcome is summarized in Table 4. The
frequency difference (�f ) and degree of consistency (MAC)
between mode pairs of damage and reference scenarios
are also reported. It can be observed that damage-induced
stiffness variations are clearly reflected by changes in the
modal parameters, with frequency average downshifts of
nearly 4.6% and 3.5% for DS1 and DS2, respectively, and
MAC values <0.85 for modes 3, 4, and 5 in both DSs. It is
worth noting that the greater the number of inflection points
featured by the mode shapes, the greater their sensitivity
to damage-induced deflection changes, and the lower their
degree of similarity with respect to the undamaged counter-
parts.

Definition of a modal-based multi-criteria opti-
mization approach

One of the most critical aspects when dealing with heuris-
tic OSP approaches is the establishment of well-defined
criteria to guide the selection of the optimal candidate
solution among various, apparently equivalently efficient
alternatives. These criteria must prioritize maximizing modal
information across multiple scenarios, as structural systems
evolve over time and sensor networks cannot be designed
solely based on baseline conditions. This consideration is
particularly important for ensuring the adaptability and
robustness of the sensor placement strategy in the face of
changing structural behaviors. Taking these aspects into
account, along with the outcomes obtained from the ana-
lytical examples discussed in Section 3, specific evaluation
criteria are formulated to compare the performance of the
investigated OSP techniques and to drive the selection of
the optimal sensor configuration for the Z24 bridge. These
criteria are outlined as follows:

1) Maximization of the number of identified modes with
frequency error <1% in the reduced sensor configuration:
To design a cost-efficient sensor placement, as many critical
modes as possible must be monitored with a limited number
of sensors. Therefore, maximizing the number of modes that
can be identified with a small error margin in terms of fre-
quencies ensures that important vibrational characteristics
are accurately captured.

2) Minimization of average frequency error between cor-
responding modes estimated through the full and reduced
set of sensors: When comparing the modes identified using
the reduced (optimized) sensor configuration to those from
a more refined setup (e.g., a dense sensor network), the
frequency error must be minimized to ensure that the modes
closely match the true modal frequencies of the structure.

3) Minimization of the average value of the off-diagonal
terms of the AutoMAC matrix obtained per each candi-
date sensor configuration: High values of off-diagonal MAC
terms indicate hardly distinguishable mode shapes. By mini-
mizing these values, the sensor configuration is optimized to
reduce mode shape overlap and redundancy, ensuring that
each sensor contributes unique and independent dynamic
information.

4) Minimization of the distance between corresponding
mode shapes of the full and reduced sensor configurations:
Minimizing the degree of dissimilarity (calculated as 1 –
MAC) between modes ensures that mode shapes identified in
the reduced configuration closely resemble those estimated
from the full configuration. Accurately capturing mode
shapes is critical for tasks such as damage detection.

5) Maximization of the ratio between diagonal covariance
coefficients and the sum of their off-diagonal terms: The
diagonal terms of the covariance matrix of the mode shape
matrix represent the energy associated with each mode, while
the off-diagonal terms reflect how much the modes interfere
or overlap with each other. The higher the ratio of diagonal
to off-diagonal terms, the stronger each mode’s contribution.

6) Identification of recurrent sensor locations: The
repeated appearance of specific sets of sensors across mul-
tiple near-optimal configurations, as well as across different
scenarios, indicates their consistently high contribution to
capturing critical structural information.

Table 4. Frequencies and damping ratios of the Z24 bridge estimated with the full sensor layout (108 channels)
across different scenarios

Mode RS DS1 DS2

f (Hz) ξ (%) f (Hz) ξ (%) �f (%) MAC f (Hz) ξ (%) �f (%) MAC

1 3.88 1.12 3.69 1.16 −4.90 1.00 3.85 1.14 −0.77 1.00
2 5.02 1.47 4.92 1.82 −1.99 0.96 4.69 1.67 −6.57 0.97
3 9.86 0.79 9.27 0.88 −5.98 0.75 9.75 0.96 −1.12 0.53
4 10.28 1.13 9.66 1.17 −6.03 0.82 10.18 1.04 −0.97 0.81
5 12.69 2.09 12.19 2.22 −3.94 0.70 11.71 2.17 −7.72 0.61
Avg − 1.32 − 1.45 −4.57 − − 1.40 −3.43 −
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The optimal sensor configuration is the one that best
satisfies the established criteria in the majority of the con-
sidered scenarios, ensuring minimal overlap between mode
shapes and maximizing the clarity and distinctiveness of the
captured dynamic information.

Comparison of investigated OSP techniques

To achieve the dual goal of maximizing SHM information
while minimizing equipment installation and maintenance
costs, the eight optimization algorithms presented in Section
2 and analyzed in Section 3 are applied using their standard
formulation to obtain a reduced set of sensors as infor-
mative as possible for the investigated bridge, accounting
for different conditions associated with the occurrence of
potential structural damage. The problem’s dimensionality
is reduced from 108 to 5 degrees of freedom, which represent
the minimum number necessary to identify the primary five
vibration modes of the bridge with sufficient accuracy while
avoiding inconsistent solutions. The eight candidate sensor

configurations derived from the applied OSP techniques are
depicted in Fig. 19, highlighting the position and direction
of each channel. As expected, sub-optimal solutions vary
among different methods, yet most of the channels are iden-
tified as best by the majority of the algorithms.

Tables 5–7 give a comparative insight into the modal
frequency results obtained per each scenario from the sub-
optimal reduced sets of sensors (5 DOFs) with respect
to those obtained from the full sensor configuration (108
DOFs). Looking at the frequency percentage error, it is
found that the candidate sensor configuration identified
from the MSSP technique (i.e., OSP3) is the best in the RS.
On the other hand, the sensor configuration commonly iden-
tified from EVP, WDPR, and NODP techniques, namely
OSP2/OSP5/OSP8, or the configurations derived from the
ADPR and VM methods, that is, OSP4 and OSP7, appear
to be the optimal solutions to catch potential damages.

For a better assessment of the reliability and sensitivity
of the different OSP techniques, considerations are also
extended to the mode shapes by comparing the average of the
off-diagonal terms of the AutoMAC matrices estimated for

OSP 1 (EfI)
Ch: 19x-19z-8z-25z-33x

OSP 2 (EVP)
Ch: 19z-20z-18z-17z-16z

OSP 3 (MSSP)
Ch: 19z-18z-20z-17z-27z

OSP 4 (ADPR)
Ch: 20z-19z-18z-23z-25z

OSP 5 (WDPR)
Ch: 19z-18z-20z-17z-16z

OSP 6 (QRD)
Ch: 19z-27z-22x-8z-21z

OSP 7 (VM)
Ch: 17z-18z-19z-20z-22z

OSP 8 (NODP)
Ch: 16z-17z-18z-19z-20z

Figure 19. Heuristic-based candidate sensor configurations for the Z24 bridge. Algorithm acronyms are indicated
between parentheses (EVP, WDPR, and NODP yield the same OSP)

Table 5. Frequency values of the vibration modes estimated from the candidate OSP configurations in the reference scenario
(RS). Average frequency percentage error and number of identified modes with �f < 1% are highlighted in bold

RS OSP1 OSP2|OSP5|OSP8 OSP3 OSP4 OSP6 OSP7
EfI EVP|WDPR|NODP MSSP ADPR QRD VM

Mode f (Hz) |�f |(%) f (Hz) |�f |(%) f (Hz) |�f |(%) f (Hz) |�f |(%) f (Hz) |�f |(%) f (Hz) |�f |(%)

1 3.87 0.26 3.88 0.00 3.88 0.00 3.87 0.26 3.87 0.26 3.87 0.26
2 5.03 0.20 5.03 0.20 5.03 0.20 5.03 0.20 5.04 0.40 5.03 0.20
3 9.91 0.51 9.81 0.51 9.84 0.20 9.85 0.10 9.82 0.41 9.88 0.20
4 10.24 0.39 10.32 0.39 10.3 0.19 10.29 0.10 10.29 0.10 10.29 0.10
5 12.60 0.71 12.74 0.39 12.76 0.55 12.79 0.79 13.17 3.78 12.78 0.71
Avg − 0.41 − 0.30 − 0.23 − 0.29 − 0.99 − 0.29
M(�f <1%) − 5 − 5 − 5 − 5 − 4 − 5
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Table 6. Frequency values of the vibration modes estimated from the candidate OSP configurations in the first damage
scenario (DS1). Average frequency percentage error and number of identified modes with �f<1% are highlighted in bold

DS1 OSP1 OSP2|OSP5|OSP8 OSP3 OSP4 OSP6 OSP7
EfI EVP|WDPR|NODP MSSP ADPR QRD VM

Mode f (Hz) |�f |(%) f (Hz) |�f |(%) f (Hz) |�f |(%) f (Hz) |�f |(%) f (Hz) |�f |(%) f (Hz) |�f |(%)

1 3.69 0.00 3.69 0.00 3.69 0.00 3.69 0.00 3.69 0.00 3.69 0.03
2 4.92 0.00 4.92 0.00 4.93 0.20 4.93 0.20 4.92 0.00 4.92 0.08
3 9.34 0.76 9.25 0.22 9.23 0.43 9.24 0.32 9.23 0.43 9.24 0.32
4 9.66 0.00 9.69 0.31 9.69 0.31 9.7 0.41 9.68 0.21 9.70 0.37
5 12.49 2.46 12.18 0.08 12.11 0.66 12.17 0.16 12.43 1.97 12.16 0.21
Avg − 0.64 − 0.12 − 0.32 − 0.22 − 0.52 − 0.20
M(�f <1%) − 4 − 5 − 5 − 5 − 4 − 5

Table 7. Frequency values of the vibration modes estimated from the candidate OSP configurations in the second damage
scenario (DS2). Average frequency percentage error and number of identified modes with �f<1% are highlighted in bold

DS2 OSP1 OSP2|OSP5|OSP8 OSP3 OSP4 OSP6 OSP7
EfI EVP|WDPR|NODP MSSP ADPR QRD VM

Mode f (Hz) |�f |(%) f (Hz) |�f |(%) f (Hz) |�f |(%) f (Hz) |�f |(%) f (Hz) |�f |(%) f (Hz) |�f |(%)

1 3.85 0.00 3.85 0.00 3.85 0.00 3.85 0.00 3.84 0.26 3.85 0.03
2 4.70 0.21 4.71 0.43 4.71 0.43 4.71 0.43 4.71 0.43 4.71 0.32
3 9.86 1.13 9.74 0.10 9.72 0.31 9.75 0.00 9.73 0.21 9.75 0.00
4 10.19 0.10 10.20 0.20 10.21 0.29 10.19 0.10 10.19 0.10 10.19 0.07
5 11.37 2.90 11.70 0.09 11.73 0.17 11.72 0.09 11.75 0.34 11.72 0.07
Avg − 0.87 − 0.16 − 0.24 − 0.12 − 0.27 0.10
M(�f <1%) − 3 − 5 − 5 − 5 − 5 5

each scenario using the experimental data acquired through
the full and reduced sensor configurations. As discussed in
Section 3, large off-diagonal MAC terms indicate hardly dis-
tinguishable mode shapes, whereas off-diagonal MAC terms
close to zero indicate orthogonality and linear independence
of the identified modal vectors. The outcome is shown in
Table 8. In this case, OSP2, OSP5, and OSP8 fail in the accu-
rate identification of the mode shapes across all scenarios
as the average of the off-diagonal terms of the AutoMAC
matrix is the highest; hence, the identified sub-optimal set of
measurement points is not adequate to ensure the extraction
of linearly independent vibration modes. Similar consider-
ations can be drawn for configurations OSP3, OSP4, and
OSP7. Conversely, both heuristics that account for sensor
interaction (EfI and QRD) provide better placements (OSP1
and OSP6, respectively).

Table 9 reports an overall quantitative metric compar-
ison among the analyzed algorithms and their respective
candidate sensor locations for the Z24, simultaneously con-
sidering all criteria defined in Section 4.3. As different
metrics can yield distinct (sub) optimal solutions, incorpo-
rating both frequency- and mode shape-related metrics in the
final assessment is crucial. Additionally, it is worth stressing
again that validating the baseline sensor layout against prob-
able DSs becomes essential to guarantee the robustness and
long-term effectiveness of the monitoring system.

As previously highlighted, considering only frequency-
related metrics, OSP3 is found to perform best in the RS,
while OSP2/OSP5/OSP8, OSP4, and OSP7 emerge as the
optimal solutions when accounting for potential damage
mechanisms. On the other hand, taking into account all
mode shape-related metrics, it is noted that OSP2, OSP5,

Table 8. Average of the off-diagonal terms of the AutoMAC matrices estimated for each scenario using the data
acquired through the full (FSP) and reduced (OSP) configurations

FSP OSP1 OSP2|OSP5|OSP8 OSP3 OSP4 OSP6 OSP7

RS 0.078 0.100 0.275 0.270 0.260 0.061 0.153
DS1 0.050 0.104 0.350 0.249 0.226 0.067 0.301
DS2 0.053 0.138 0.341 0.264 0.247 0.161 0.307
Avg 0.060 0.114 0.322 0.261 0.244 0.096 0.254
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Table 9. Modal-based multi-criteria optimization: comparison of frequency- and mode shape-related metrics for each
candidate configuration (the best metrics are highlighted in grey)

FSP OSP1 OSP2|OSP5|OSP8 OSP3 OSP4 OSP6 OSP7

No. modes (�f <1%) RS 5 4 5 5 5 4 5
DS1 5 4 5 5 5 4 5
DS2 5 3 5 5 5 5 5
Avg 5 3.67 5 5 5 4.33 5

Average
|�f |(%)

RS 0.00 0.41 0.30 0.23 0.29 0.99 0.29
DS1 0.00 0.64 0.12 0.32 0.22 0.52 0.20
DS2 0.00 0.87 0.16 0.24 0.12 0.27 0.10
Avg 0.00 0.64 0.19 0.26 0.21 0.59 0.20

Average off-diag
AutoMAC

RS 0.08 0.10 0.28 0.27 0.26 0.06 0.15
DS1 0.05 0.10 0.35 0.25 0.23 0.07 0.30
DS2 0.05 0.14 0.34 0.26 0.25 0.16 0.31
Avg 0.06 0.11 0.32 0.26 0.24 0.10 0.25

(1-MAC)
Full vs. OSP

RS 0.00 0.05 0.08 0.11 0.17 0.08 0.43
DS1 0.00 0.03 0.03 0.03 0.03 0.04 0.03
DS2 0.00 0.07 0.01 0.04 0.03 0.04 0.02
Avg 0.00 0.05 0.04 0.06 0.08 0.05 0.16

Mode shape covariance
ratio

RS −26.22 −2.93 87.91 −9.69 4.47 −3.97 3.68
DS1 −6.32 −1.68 55.99 −4.88 2.19 −2.32 2.19
DS2 − 4.27 −0.61 19.27 −2.94 1.02 −0.87 0.80
Avg −12.27 −1.74 54.39 −5.84 2.56 −2.39 2.22

Table 10. Identification of recurrent regions for best sensor placement through a local maxima approach

Algorithm Optimal channel locations and directions

Side span (Utzenstorf) Mid span Side span (Koppigen)

MSSP 7z 18z–26z 37z
EVP 8z 18z–25z 35z–37z
VM 7z 17z–21z–24z 37z
NODP 6z–8z–11z 19z–21z–23z–25z–33z 40z
ADPR 7z 19z–22z–24z 37z
WDPR 8z –11z 18z–21z–23z–25z 35z–39z

and OSP8 reduced configurations ensure the identification
of mode shapes that closely resemble those estimated from
the full configuration and feature the highest ratio of diag-
onal to off-diagonal covariance terms; however, they fail
in the accurate identification of modes across all scenarios
as the average of the off-diagonal terms of the AutoMAC
matrix is the highest. This means that the identified sub-
optimal set of measurement points is fairly good but not fully
adequate to ensure the extraction of linearly independent
vibration modes. Instead, the configurations derived from
the algorithms exploiting sensor interaction, namely OSP1
and OSP6, are the only ones featuring channels also in
transversal direction and that perform better in terms of
mode shape identifiability across all scenarios although the
strength of each mode contribution is not very high because

of the non-clustered distribution of sensors in the regions of
modal maxima. The remaining configurations (OSP3, OSP4,
and OSP7) are excluded from the final placement selection
due to their poor overall metrics.

These comparative analyses make clear the difficulties
associated with selecting a univocal optimal solution. Thus,
to enhance the final placement performance, recurrent
regions are strategically identified through a local max-
ima approach (Table 10), setting the number of minimum
required sensors equal to the number of target modes of the
undamaged bridge in the vertical direction.

By combining standard and local maxima approaches,
nodes 8, 18, 19, 25, and 37 emerge as the most recurrent
non-clustered measurement points to optimize bridge modal
information retrieval from sensors while minimizing SHM
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Table 11. Comparison of frequency values between corresponding vibration modes estimated from the full and final
configurations across all scenarios

Mode RS DS1 DS2

f full (Hz) f best (Hz) |�f |(%) f full (Hz) f best (Hz) |�f |(%) f full (Hz) f best (Hz) |�f |(%)

1 3.88 3.88 0.00 3.69 3.69 0.00 3.85 3.85 0.00
2 5.02 5.02 0.00 4.92 4.92 0.00 4.69 4.66 0.64
3 9.86 9.84 0.20 9.27 9.21 0.65 9.75 9.71 0.41
4 10.28 10.29 0.10 9.66 9.66 0.00 10.18 10.15 0.29
5 12.69 12.77 0.63 12.19 12.39 1.64 11.71 11.73 0.17
Avg − − 0.19 − − 0.46 − − 0.30
M(�f <1%) − − 5 − − 4 − − 5

Table 12. Mode shape-related metrics for the final sensor configuration

RS DS1 DS2 Avg

Avg off-diag AutoMAC 0.08 0.06 0.08 0.07
(1-MAC) Full vs. OSP 0.06 0.03 0.02 0.04
Mode shape covariance ratio −2.15 −3.31 −2.39 −2.62

equipment installation and maintenance costs. Considering
these findings and expert judgment insights, the sensor place-
ment shown in Table 11 is ultimately selected as best for
the case study under consideration. As a backward valida-
tion, both frequency- and mode shape-related metrics are
computed across all scenarios for the final optimal configu-
ration. The outcome is reported in Tables 11 and 12. Since
mode shapes are more effective and reliable in localizing
structural damage compared to frequencies, which are easy
to identify but may exhibit similar changes for different
damage locations,30 mode shape-related metrics are given
greater weight than frequency-related metrics when assessing
the effectiveness of the sensor placement. Accordingly, the
chosen configuration results as best in terms of mode shape
identifiability across all scenarios.

Conclusions

This paper explored and discussed two well-established
classes of heuristic algorithms for the optimal placement of
sensors in the context of multi-span bridge monitoring. Par-
ticularly, eight heuristics were investigated: (1) NODP; (2)
EVP; (3) MSSP; (4) ADPR; (5) WDPR; (6) VM; (7) QRD;
and (8) EfI. While the first six are individual sensor ranking
algorithms, the last two rank sensors according to their inter-
action. In the first part of this study, the performance metrics
of the aforementioned algorithms were examined through
four analytical examples of beam-like systems with vary-
ing boundary conditions. Subsequently, the effectiveness of
the selected OSP algorithms was evaluated through their
application to a real-world bridge structure, also explor-
ing alternative ranking solutions to refine the identification

of the final best sensor placement among multiple near-
optimal candidate configurations. Focusing on a data-driven
approach, any computational costs and resources related to
the generation and updating of complex numerical models
representative of the real structure are avoided. The actual
computational effort is limited to extracting modal proper-
ties from signals recorded in the ambient vibration campaign
and applying the heuristic algorithms.

The main conclusions drawn from the study can be sum-
marized as follows:

• In their basic version, heuristic algorithms for OSP
tend to concentrate sensors within limited regions,
and none of them provide prior information on
the optimal number of sensors required. Moreover,
depending on the adopted metric, sub-optimal solu-
tions can vary significantly.

• Alternative ranking solutions that exploit the local
maxima of the metric functions, rather than their
maximum values, can overcome the problem of
sensor clustering and provide a rapid approach to
determining the optimal number of sensors required
for a given set of target modes. However, this
approach is more suitable for mode shapes involving
displacement components in a single plane and for
beam-like structures. A generalization of the method
for mode shapes involving displacements along mul-
tiple directions and considering a 3D distribution of
the candidate nodes is currently under development.

• Regardless of the approach, sensor distribution is
always highly dependent on the number and charac-
teristics of the chosen target modes.

• A modal-based multi-criteria optimization can be
used to enhance the selection of the optimal sensor
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placement among different and apparently equiva-
lent sub-optimal candidate solutions. Multi-objective
optimization that accounts for sensor installation
and maintenance costs should also be considered to
fully address the OSP problem.

• Since mode shapes are more effective and reliable in
localizing structural damage compared to frequen-
cies, mode shape-related metrics should be given
greater weight than frequency-related metrics when
assessing the effectiveness of the sensor placement.

• While the applied multi-criteria optimization frame-
work remains valid for any type of bridge and with
the addition of more DSs, the resulting optimal
sensor layout is strictly case-specific and should be
validated against diverse realistic failure mechanisms
to guarantee the robustness and long-term effec-
tiveness of the monitoring system. However, it is
important to note that OSP is always performed
prior to monitoring and before any damage occur-
rence. Therefore, including damage information in
the optimization process is only feasible following
a model-based approach, provided that DSs can
be accurately simulated—which is often arguable in
many practical situations.

• Fault tolerance is a critical aspect when the SHM
network consists of a reduced configuration of opti-
mal acquisition channels distributed across a large
structure. A minimum number of sensors able to
guarantee an “analytical redundancy” approach in
the targeted regions should always be conceived,
along with lightweight data duplication systems.
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