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Abstract: This paper proposes a novel explainable machine learning (ML) model to predict the axial load-carrying
capacity of FRP-confined corroded RC columns utilizing the eXtreme Gradient Boosting (XGBoost) algorithm and
Shapley Additive exPlanations (SHAP) technique. The XGBoost predictive model is developed based on a thorough
database of experimental tests for 285 FRP-confined corroded RC columns collected from the existing studies (231
specimens) and those performed by the authors (54 specimens). Twenty parameters are considered as the critical
input variables for developing the predictive model. SHAP technique is employed for evaluating the importance and
interpreting the XGBoost model’s prediction performance. In addition, the feasibility and effectiveness of the developed
XGBoost predictive model are assessed using several empirical design models and other ensemble ML algorithms. The
results indicate that, (1) the suggested XGBoost model is feasible to predict the axial load-carrying capacity of FRP-
confined corroded RC columns; (2) the SHAP technique provides good explainability and interpretability to the XGBoost
predictive model; (3) the input variables can be comprehensively studied concerning the feature importance through the
SHAP technique, and the most important ones affecting the axial load-carrying capacity of FRP-confined corroded RC
columns are the gross sectional area of column, FRP thickness, elastic modulus of FRP, eccentricity ratio, corrosion
rate, and concrete compressive strength; (4) the prediction effectiveness and feasibility of the developed XGBoost model
outperform that of the existing empirical models and other ML algorithms, and the mean values of R2, RMSE, MAE,
and MAPE of the XGBoost model are 0.978, 122 kN, 703.6 kN, and 7.7%, respectively; and (5) the XGBoost model can
offer the alternative approach to determine the axial load-carrying capacity of FRP-confined corroded RC columns for
design practice, in addition to current mechanics-based design models.

Author keywords: FRP-confined corroded RC columns; deteriorating effect; machine learning; XGBoost algorithm; SHAP
technique; empirical models

Introduction

Due to their superior structural resistance, RC struc-
tures are widely applied for the protective design of civil
infrastructures nowadays.1,2 However, they are prone to
numerous deterioration mechanisms because of environmen-
tal effects and climate change, such as erosion, carbonation,
freeze-thaw cycles, fatigue, and chloride-induced corrosion
(CIC).2–8 Among these deterioration effects, CIC could lead
to significant corrosion of steel bars and has been recognized
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as one of the primary causes impairing the mechanical
properties and durability of aging RC structures. Numerous
studies have focused on the deterioration impacts of CIC on
the degraded structural response and load-carrying capacity
of aging RC structures.2,9–11 RC columns are critical struc-
tural members of many highway bridges and buildings, and
the tragic damage caused by CIC could trigger progressive
collapse.1,2,12,13 In addition, the structural redundancy of
RC columns is generally weaker than their beams and slab
counterparts.2,12 Thus, it is significant to improve the dete-
riorated structural resistance and structural performance
of corroded RC columns, reduce tremendous social and
economic losses, and, more importantly, mitigate human
casualties.1,2,13,14 This also necessitates investigations regard-
ing how to improve the deteriorated resistance and residual
strength of corroded RC columns, which is one of the pri-
mary research focuses of this study.

Fiber-reinforced polymer (FRP) has been widely
employed to strengthen and retrofit corroded RC structures
because of its inherited advantages of high strength,
lightweight, superior corrosion resistance, simple on-site
construction, and lower maintenance expense.15–19 The
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advantages of FRP in strengthening the corroded RC
structures mainly depend on the following aspects.20,21

Firstly, FRP-wrapped structures could apply the confining
pressure to offset the expansive forces generated by corrosion
products. Secondly, FRP composites could act as the
physical diffusion barrier to prevent the ingress of chloride
ions and oxygen into RC structures, delaying corrosion of
steel bars and thus protecting them from CIC.20,21 Thus,
strengthening or rehabilitation of corroded RC columns by
wrapping FRP composites has been extensively investigated
both experimentally16,17,22,23 and theoretically.24,25 Moreover,
significant efforts were dedicated to investigating the
structural response and mechanical properties of FRP-
strengthened RC columns, i.e., stress–strain behavior,26–28

seismic performance,11,29–33 and axial and eccentric compres-
sion behavior.16,34–37 These studies indicate that additional
confinement provided by the wrapped FRP composites
could significantly enhance the structural resistance of
corroded RC columns.

However, numerous studies mainly focused on the
mechanical performance of uncorroded RC columns. In con-
trast, limited ones were performed to examine the strength
prediction of corroded RC columns confined by FRP com-
posites (FRP-confined corroded RC columns). Zhou et al.11

experimentally studied the seismic behavior of several cor-
roded RC columns strengthened by FRP. They found that
corrosion of steel bars could significantly deteriorate the
strength and ductility of columns. Bae and Belarbi16 exper-
imentally studied the corrosion of steel bars on the bearing
capacity of CFRP-wrapped corroded RC columns. They
found that CFRP wrapping was helpful in decreasing the
steel corrosion rate and reducing the degradation of stiff-
ness and bearing ability of columns. Dai et al.33 studied
the deformation ability of FRP-retrofitted corroded RC
columns and suggested an improved prediction model for
the evaluation of the yield rotation of columns. In addition,
Chotickai et al.34 experimentally examined the influence
of corrosion damage and volumetric CFRP ratio on the
eccentric compressive behavior of CFRP-strengthened cor-
roded RC columns. They suggested that the effectiveness
of CFRP jacketing in enhancing the ultimate compressive
strength of the corrosion-damaged columns depended on
the volumetric CFRP ratio, and CFRP jacketing with a
higher volumetric CFRP ratio could achieve a more effective
confinement contribution and restore a more effective cross-
sectional area of the cracked concrete. Li et al.37 studied the
effects of corrosion-induced damages under different corro-
sion rates of steel rebar on the structural behavior of several
LRS-FRP-confined corroded RC columns. They observed
that steel rebar corrosion could accelerate the steel rebar’s
bucking and concrete deterioration, thus reducing the ulti-
mate compressive strength of columns. Also, compared with
the unconfined corroded ones, the load-carrying capacity
(Pmax), ductility, and energy-absorbing capacity of LRS-
FRP-confined corroded RC columns were much superior,
indicating the effective confinement provided by LRS-FRP
composites.

Based on the above-mentioned literature review, most
of the previous studies mainly considered corrosion of

steel bars through the degradation of the steel rebar’s
cross-sectional area. However, in practical situations, the
deterioration effects of CIC are more complicated. In
addition to the degradation of the rebar’s area, the deterio-
ration effects of CIC should be non-uniform. Non-uniform
CIC could lead to many other secondary effects, such
as (i) degradation of the yield and ultimate strengths of
rebar and (ii) degradation of the compressive strengths
of cover and confined concrete.2,4,8,10 The accumulation
of the corrosion products could also lead to the cover
concrete being cracked and spalled off, which would fur-
ther impair the bond strength between the steel rebar and
concrete.11,38,39 Besides, apart from its deterioration impacts
on the degradation of material properties, non-uniform CIC
could also result in the degradation of stiffness, ductil-
ity, and Pmax of corroded RC columns, particularly those
under compression.34,36,40–42 Moreover, corrosion of steel
bars induced by CIC could affect the strain distributions
of FRP composites and, thus, further impairing the con-
finement efficiency for FRP-confined RC columns.29,31,32,39

Thus, because of the combined action of FRP confinement
and corrosion-induced damages, it is difficult to predict
the Pmax of FRP-confined corroded RC columns accurately.
Although several existing available empirical models sug-
gested by some scholars43–45 could be employed to predict
Pmax of FRP-confined RC columns, the feasibility should be
further validated. Additionally, since these empirical models
were developed based on predefined formulas, and a limited
number of test results, there should exist significant discrep-
ancies in predicting the Pmax of columns.18,46 Therefore, it is
necessary to develop an accurate model for predicting the
Pmax of FRP-confined corroded RC columns for the safe
design and retrofitting purposes.

Recently, with the rapid development of computing tech-
nology, data-driven and machine learning (ML) algorithms
have emerged as robust and powerful techniques to address
many complicated civil engineering problems.18,19,46–56 Com-
pared to conventional empirical models, the featured merits
of ML algorithms are primarily attributed to their capability
to assess the relationship between the input critical variables
and output parameters without the requirements of the prior
setting of assumptions and the predefined mathematical or
physical models.46 Hence, many scholars have applied ML
algorithms as one of the primary alternative techniques
to determine the compressive strength,47–49,57 stress–strain
model,52,54 and load-carrying capacity or failure modes of
RC members with superior accuracy.18,46,51,53,56

Owing to the superior computation efficiency and strong
capability in modeling datasets, eXtreme Gradient Boost-
ing (XGBoost) is known as one of the most advanced
ML algorithms.18 Thus, the XGBoost algorithm has been
widely applied in civil engineering.18,19,46,58–62 For instance,
to predict the Pmax of FRP-RC columns, Bakouregui et al.18

developed the XGBoost model based on 283 experimen-
tal results for FRP-RC columns, and the effectiveness and
feasibility of the model were evaluated through several
code-based design models and empirical equations. They
suggested that the XGBoost predictive model outperformed
the numerical equations and code-based design models.
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Liu et al.19 developed an XGBoost model to predict the
life-cycle mechanical performance of the pultruded FRP
composites. They suggested that the XGBoost model could
provide a good prediction interpretability, and its predic-
tion results agreed well with the test data. Similarly, to
develop the predictive model in determining the flexural
capacity of FRCM-strengthened RC beams, Wakjira et al.46

assessed the prediction performance of the XGBoost algo-
rithm and the other six ML models. They suggested that
the XGBoost model outperformed other ML algorithms
and exhibited optimal accuracy. Likewise, based on a com-
prehensive experimental database, Ma et al.62 proposed
a novel XGBoost algorithm for predicting the Pmax of
CFRP-confined CFST columns with superior efficiency and
accuracy. Thus, the aforementioned studies have confirmed
that the XGBoost model has high computational efficiency,
and a well-trained XGBoost predictive model could achieve
reasonable prediction results with excellent accuracy. There-
fore, this paper proposes to employ the XGBoost algorithm
to predict the Pmax of FRP-confined corroded RC columns.

However, the XGBoost algorithm also has several
inevitable limitations. For example, similar to other typi-
cal ML models, the XGBoost algorithm is considered as
“black boxes” owing to it is usually impossible to explain
the involved mechanisms.18,46 Thus, the explainability of ML
models should be an imperative step to support a desirable
prediction. In this regard, to achieve the interpretable and
explainable XGBoost model, the Shapley Additive exPla-
nations (SHAP) technique63 could be utilized. However, to
date, very limited research has focused on the interpretabil-
ity and explainability of ML algorithms using the SHAP
technique.18,19,46,55,64,65

Therefore, this study aims to propose a novel, explain-
able predictive model to achieve an alternative and robust
prediction of Pmax for FRP-confined corroded RC columns.
Firstly, the XGBoost predictive model is constructed based
on the thorough test results of 285 FRP-confined corroded
RC columns, including 231 experimental tests gathered from

the existing studies reported in the literature and 54 from
the authors. Then, through the correlation analysis, twenty
parameters are selected as the critical input variables to
construct the XGBoost model. Subsequently, the SHAP
framework is applied to assess the feature significance of the
input variables and interpret the XGBoost model. In addi-
tion, the capability and prediction performance of the model
are compared and validated through several empirical design
models reported in the literature and some widely used ML
algorithms, such as the decision tree (DT), random forest
(RF), and gradient boosting decision tree (GBDT). Finally,
some major conclusions and possible future investigations
are summarized.

Methodology

XGBoost algorithm

Fig. 1 shows the schematic information of the XGBoost
algorithm. As seen from Fig. 1, the XGBoost framework
mainly consists of several root nodes, a number of inter-
nal nodes, branches, and leaf nodes. Besides, the XGBoost
algorithm is known as an advanced implementation, and it
employs an additive strategy, which can be mathematically
represented by Eq. (1) below.18,19

ŷi =
M∑

m=1

fm (X i) (1)

where ŷi is the predicted response with respect to the input
X i; M is the total number of classifications and regression
trees (CARTs) (i.e., m = 1, 2, ···, M); and f m (X i) is the pre-
dicted response of each CART. After the prediction results
are attained, the objective function (L) is required to assess
the performance and accuracy of the results. During the
development of XGBoost model, L can be expressed by,19

L =
n∑

i=1

l
(
yi, ŷi

) +
K∑

k=1

Ω (fk) (2)

Figure 1. Schematic information of the XGBoost decision tree model
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As given in Eq. (2), n is the total number of datasets
(i.e., i = 1, 2,···, n), K is the total number of trees (as
illustrated in Fig. 1) (i.e., k = 1, 2,···, K), and L contains two
different parts, including (i) loss function l

(
yi, ŷi

)
and (ii)

regularization item Ω, which can be represented by,

Ω (f ) = γ T + 1
2
λ ·

T∑
j=1

ω2
j (3)

where T is the number of leaf nodes of a CART (i.e., j =
1, 2, ···, T); ωj is the predicted value of the jth leaf node; γ

and λ are the hyperparameters of the model. To minimize
L and attain the optimized predictions, the XGBoost model
training is generally required. Such a training process is an
optimization problem, which should be performed in a step-
by-step manner. During each step, a new CART is developed
based on the existing CARTs, so L can be further minimized.
Thus, the objective function of the tth step can be determined
by,

L(t) =
n∑

i=1

l
(

yi, ŷ(t)
i

)
+

t∑
i=1

Ω (fi) =
n∑

i=1

l
(

yi, ŷ(t−1)
i + ft (xi)

)

+
t−1∑
i=1

Ω (fi) + Ω (ft) (4)

During the tth step, the existing (t − 1) CART is usually
known and it can be considered as a constant. Thus, the
objective function L(t) can be further simplified as,

L(t) =
n∑

i=1

l
[
yi, ŷ(t−1)

i + ft (xi)
]

+ Ω (ft) + c (5)

In addition, the second-order Taylor approximation can
be employed to optimize the L(t), so Eq. (5) can be further
transformed into Eq. (6).

L(t) =
n∑

i=1

l
[

yi, ŷ(t−1)
i + gift (xi) + 1

2
hif 2

t (xi)

]

+ Ω (ft) + c (6)

In which,

gi =
∂l

[
yi, ŷ(t−1)

i

]
∂ ŷ(t−1)

i

(7)

hi =
∂2l

[
yi, ŷ(t−1)

i

]
∂

[
ŷ(t−1)

i

]2 (8)

Moreover, for the loss function l (·), the only requirement
is that it should permit the second-order derivative.19 Addi-
tionally, because the input variables X i should be projected
to the leaf nodes of the CARTs, f k (X i) can be represented
by,

fk (X i) = ωq(X i), ω ∈ RT , q : Rd → {1, 2, · · ·, T} (9)

where q(X i) is a map function; ω is the leaf node value; d is
the attribute number of the input X i; and RT and Rd are the

T-dimensional and d-dimensional vectors, respectively. Sub-
mitting Eqs. (3), (7)–(9) into Eq. (6), L(t) can be determined
by,

L(t) ≈
n∑

i=1

[
giωq(X i) + 1

2
hiω

2
q(X i)

]
+ γ T + 1

2
λ

T∑
j=1

ω2
j + c

=
T∑

j=1

⎡
⎣

⎛
⎝∑

i∈Ij

gi

⎞
⎠ · ωj + 1

2
·
⎛
⎝∑

i∈Ij

(hi + λ)ω2
j

⎞
⎠

⎤
⎦

+ γ T + c (10)

Letting Gj = ∑
i∈Ij

gi and Hj = ∑
i∈Ij

hi, Eq. (10) can be further

simplified as,

L(t) =
T∑

j=1

[
Gjωj + 1

2
· (

Hj + λ
)
ω2

j

]
+ γ T + c (11)

To obtain Lmin, the first derivative of Eq. (11) can be
acquired, and hence Lmin can be determined by using
Eq. (12).

Lmin = 1
2

·
T∑

j=1

G2
j

Hj + λ
+ γ T + c (12)

Additionally, Lmin can be achieved when ωj is represented
by,

ωj = − Gj

Hj + λ
(13)

Explaining the XGBoost model using the SHAP
technique

Owing to the difficulty within the interpretation and
explanation of the involved mechanisms of ML mod-
els, they are usually considered as “blacked boxes.” Both
the interpretability and explainability of the models are
important in understanding the complicated nonlinear rela-
tionships between the input and output variables of ML
algorithms.18,51 In which, interpretability is usually defined
as the ability to explain or to provide meaning in understand-
able terms to a human.18 Besides, explainability is associated
with the notion of explanation as an interface between
humans and a decision-maker, that is, at the same time,
both an accurate proxy of the decision-maker and compre-
hensible to humans.18 Explanations supporting the output
of an ML model are crucial, especially in civil engineer-
ing. The Shapley Additive exPlanations (SHAP) technique
proposed by Lundberg and Lee63 is one of the explainable
artificial intelligence (XAI) tools that can be used to explain
these complex models. The SHAP technique is a unified
approach to explain the output of any ML model. The SHAP
technique aims to provide local explainability by building
surrogate models based on the ML models. The SHAP
technique has a fast implementation for tree-based models,
and it is very popular in interpreting ML models.18 Thus, in
this study, the SHAP technique is employed to interpret and
explain the developed XGBoost predictive model.
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The SHAP algorithm calculates the contribution of each
input variable to the prediction for each observation. This
contribution is calculated by using the input variables and
the prediction. SHAP values are based on conditional
expectation and Shapley game theory, whose aims are to
investigate how each feature affects the prediction. The
Shapley game theory aims at distributing the total gain or
payoff among players, depending on the relative importance
of their contributions to the final outcome of a game.18 In
order to generate an interpretable and explainable predictive
model, the SHAP technique employs an additive feature
attribution, e.g., an output model is defined as a linear
addition of the input variables. Assuming a model with input
variables x = (x1, x2, . . . , xn), where n is the number of input
variables, the explanation model g(x′) with simplified input
x′ for an original model f (x) can be expressed as18,51,56:

f (x) = g
(
x′) = ϕ0 +

N∑
j=1

ϕjx′
j (14)

where N is the number of all input features; ϕ0 is a con-
stant when all input variables are missing; and ϕ j is the
contribution of the jth feature to the model output, which is
the core computed SHAP value. The input variables x and
x′ are correlated through a mapping function, x = hx(x′).
Generally, Eq. (14) can be illustrated by Fig. 2, in which ϕ0,
ϕ1, ϕ2, and ϕ3 increase the predicted value of g(x′), while
ϕ4 decreases this value. According to Lundberg and Lee,63

a unique solution should exist for Eq. (14), which has three
desirable features, i.e., (i) local accuracy, (ii) missingness,
and (iii) consistency.51,56 In specific, local accuracy ensures
that the output of the function is the sum of the feature
attributions and requires the model to match the output of
f (·) for the simplified input x′. The local accuracy happens
when x = hx(x′). Missingness ensures that no importance
is assigned to missing features. As xi

′ = 0 implies φi =
0 (i.e., φi is the Shapely value), missingness is satisfied.
Through consistency, changing a larger impact feature will
not decrease the attribution assigned to that feature. For a
setting z′\i when zi

′ = 0, f ′
x (z′) − f ′

x (z′\i) ≥ fx (z′) − fx

(z′\i) implies φi (f ′, x) ≥ φi (f , x). Thus, the only possible
model that satisfies these properties can be determined by,51

φj (f , x) =
∑
z′⊆x′

|z′| ! · (N − |z′| − 1) !
N!

· [
fx

(
z′) − fx

(
z′\j

)]
(15)

where |z′| is the number of non-zero entries in z′; Lund-
berg and Lee63 suggested a solution to Eq. (15) where
fx (z′) = f (hx (z′)) = E [f (z) |zS]; and S is the set of non-zero
indices z′, which is known as SHAP values.

Based on the aforementioned introductions, the SHAP
technique can provide good explanations for local and global
models. SHAP values can be approximated by various meth-
ods, such as Kernel SHAP, Deep SHAP, and Tree SHAP.18

Among these methods, Tree SHAP, a version of SHAP for
tree-based ML models (e.g., decision trees, random forest
(RF), and gradient-boosted trees (i.e., XGBoost and Cat-
Boost)), is used in this study. Tree SHAP considers tree-based
models alongside an input dataset X of size N×M and
produces an N×M matrix with the SHAP values. The SHAP
interaction values guarantee consistency in explaining the
effects of interaction on individual predictions. The two
unique advantages of SHAP values are its global and local
interpretability. Contrary to the existing important features
in ML models, the SHAP technique can identify whether
the contribution of each input feature is positive or negative.
Also, each observation can get its SHAP value. Thus, the
SHAP can help interpret the model globally as well as locally.
A more detailed description and application of the SHAP
technique in civil engineering practice could be referred to
several previous researches.18,51,56

Determination of the XGBoost Predictive
Model

Experimental database

To establish the XGBoost predictive model, a comprehensive
database of experimental tests for 285 FRP-confined cor-
roded RC columns was collected from 16 previous studies
(231 specimens) and those conducted by the authors (54
specimens), as summarized in Tables 1 and 2, respectively.
As per the collected columns, 202 were circular and 83 were
square or rectangular specimens. Additionally, the collected
specimens consisted of 225 and 60 columns under concen-
tric and eccentric compression, respectively. As summarized
in Table 3, the experimental database included 20 critical
parameters. In addition, Table 4 summarizes the statistical
information. As seen from Table 4, the tensile strength of
FRP (Ffrp), load-carrying capacity (Pmax), and gross cross-
sectional area of the collected columns tended to exhibit the
largest variations.

Figure 2. SHAP attributes51
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Table 1. Summary of the existing studies used to develop the experimental database

No. References Number of specimens and type of loading

Concentric compression Eccentric compression

1 Bae and Belarbi16 7 —
2 Li et al.37 16 —
3 Tastani and Pantazopoulou66 11 —
4 Jayaprakash et al.67 — 15
5 Chotickai et al.68 — 12
6 Maaddawy69 — 12
7 Radhi et al.70 8 —
8 Nematzadeh et al.71 — 9
9 Shaikh and Alishahi72 4 12
10 Bai et al.73 6 —
11 Shan74 34 —
12 Yu75 16 —
13 Li et al.76 3 —
14 Wen77 10 —
15 Chen78 28 —
16 Gao79 28 —

Determination of the input variables

Reasonable determination of the input variables is sig-
nificant to accurately predict the Pmax of FRP-confined
corroded RC columns. Thus, a comprehensive investigation
of the constructed experimental database was conducted by
determining the correlation coefficient (ϕk) and correspond-
ing statistical importance.18 The primary aim of correlation
analysis is to investigate the potential association relation-
ship between the independent input parameters and output
response. The concept of ϕk was proposed by Baak et al.,80

and it has several advantages. The statistical importance
is usually utilized to determine the accuracy and relevance
of ϕk. Indeed, a high coefficient of correlation might be
statistically significant or insignificant. On the other hand,
a small correlation might be very significant. The statisti-
cal significance of each correlation was based on a hybrid
method of Monte Carlo simulations (MCS) and adjustments
of Pearson’s χ 2 test.18,80 The significance is obtained by
converting the p-value of the hypothesis test to a normal Z-
score. The significance is defined as follows:

Z = Φ−1 (1 − p) (16)

Φ (z) = 1√
2π

·
∫ z

−∞
e−t2/2dt (17)

where Z is the significance in 1-sided Gaussian standard
deviations and Φ−1 is the quantile of the standard Gaussian.
It should be noted that the input variables were simplified
before the correlation analysis. For example, D, H, b, and h
were integrated by using Ag. r was simplified by ρ, which is
more suitable in practical situations. For the input material
properties of FRP composites, FRPtype could be represented
by Efrp and Ffrp, as well as Nfrp could be represented by

tfrp. Similarly, for the input material properties of steel bars,
Ltype could be represented by ρs. Fig. 3 shows the ϕk and
statistical significance matrixes of the input parameters. ϕk

varies between 0 and 1, where 0 means no association and 1
means complete association, respectively.

As illustrated in Fig. 3, a darker color means a more
pronounced correlation. For the selected variables, Pmax of
the specimens exhibited a strong correlation with f c (ϕk =
0.81, significance = 8.44), Ag (ϕk = 0.77, significance =
8.45), tfrp (ϕk = 0.76, significance = 5.87), Ebar (ϕk = 0.76,
significance = 6.86), Ffrp (ϕk = 0.75, significance = 6.93), and
Fbar (ϕk = 0.75, significance = 9.38), respectively. Likewise,
Pmax also correlated well with ρs (ϕk = 0.71, significance
= 7.38), e (ϕk = 0.71, significance = 7.17), Efrp (ϕk =
0.67, significance = 7.13), and ρ (ϕk = 0.63, significance =
4.8), respectively. Fig. 4 shows the linear regression analysis
results of Pmax of the columns with different input variables.
Obviously, as seen from Fig. 4, the Pmax of the specimens
exhibited an increasing trend with the increase of Ag, ρ, f c,
tfrp, Efrp, Ffrp, Ebar, and Fbar, but it decreased with the increase
of ρs, e, and η. Based on the above-mentioned preliminary
correlation analyses, the following function was considered
as the XGBoost predictive model for predicting the Pmax of
FRP-confined corroded RC columns.

Pmax = f
(
Ag, ρ, fc, tfrp, Efrp, Ffrp, ρs, Ebar, Fbar, e, η

)
(18)

Model training and performance evaluations

In this study, the experimental database was randomly cat-
egorized into two different parts, including (1) the training
datasets and (2) the testing datasets. In specific, 80% and
20% of specimens were used to construct the training and
testing datasets, respectively. The former was employed to
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Table 3. Descriptions and representations of the input/output variables

Variables Parameters (units) Notation

Input Diameter of circular cross-section (mm) D
Column height (mm) H
Width of rectangular cross-section (mm) b
Height of rectangular cross-section (mm) h
Column gross cross-sectional area (mm2) Ag

Column section type Sectiontype

Corner radius (mm) r
Corner radius ratio ρ

Compressive strength of concrete (MPa) f c

Type of fiber-reinforced polymer FRPtype

Layer number of FRP Nfrp

Thickness of FRP tfrp

Elastic modulus of FRP Efrp

Tensile strength of FRP Ffrp

Type of longitudinal reinforcement Ltype

Longitudinal reinforcement ratio (%) ρs

Elastic modulus of steel reinforcement (GPa) Ebar

Yield strength of the steel reinforcement (MPa) Fbar

Eccentricity ratio (%) er

Corrosion rate (%) η

Output Load-carrying capacity (kN) Pmax

Table 4. Summary of the statistical information of the input variables

Input and output variables Minium Mean Standard deviation Maximum

D (mm) 100 158.85 38.26 203
H (mm) 150 504.45 261.44 1375
b (mm) 120 150.96 27.17 200
h (mm) 120 150.96 27.17 200
Ag (mm2) 7850 21750.21 9132.59 40000
r (mm) 0 7.32 15.47 75
ρ 0 0.78 0.35 1
f c (MPa) 17.7 33.06 7.35 47
tfrp (mm) 0 0.23 0.23 1.68
Efrp (GPa) 0 162.65 111.87 280
Ffrp (MPa) 0 2826.66 1664.18 4900
ρs (%) 0.89 2.75 1.29 6.79
Ebar (GPa) 199.1 205.80 11.73 237
Fbar (MPa) 210 412.57 82.53 550
er (%) 0 0.19 0.52 3.44
η (%) 0 10.02 9.62 51
Pmax (kN) 36.9 915.59 628.67 2536.11

train the model and parameter evaluation, whereas the lat-

ter was taken for model assessment. Thus, in the present

developed XGBoost predictive model, the training and test-

ing datasets had 228 and 57 FRP-confined corroded RC

columns, respectively. As per the model training, the effec-

tiveness and capability of the XGBoost model were assessed

by using several crucial measures, including (i) the coefficient

of determination (R2); (ii) root mean square error (RMSE);
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Figure 3. Correlation coefficients and statistical significance of each correlation: (a) correlation coefficient and (b)
statistical significance

(iii) mean absolute error (MAE); and (iv) mean absolute per-
centage error (MAPE).18,19 Their mathematical expressions
are given in the following equations.

R2
(

Pmax, P̂max

)
= 1 −

m∑
i=1

(
Pmax (i) − P̂max (i)

)2

m∑
i=1

(
Pmax (i) − Pmax

)2
(19)

RMSE
(

Pmax, P̂max

)
=

√√√√ 1
m

·
m−1∑
i=0

(
Pmax (i) − P̂max (i)

)2

(20)

MAE
(

Pmax, P̂max

)
= 1

m
·

m−1∑
i=0

∣∣∣Pmax (i) − P̂max (i)
∣∣∣ (21)

MAPE
(

Pmax, P̂max

)
= 100

m
·

m−1∑
i=0

∣∣∣∣∣Pmax (i) − P̂max (i)
Pmax (i)

∣∣∣∣∣ (22)

where m is the number of data points; Pmax and P̂max are the
experimental and predicted ultimate strengths of columns,
respectively; and Pmax is the mean value of test results, which
can be determined by Eq. (23). Among these statistical mea-
sures, a larger R2 (i.e., close to 1.0) and the smaller values
of RMSE, MAE, and MAPE indicate superior prediction
accuracy of the model.

Pmax = 1
N

·
N∑

i=1

Pmax (i) (23)

Model tuning and cross-validations

The performance and effectiveness of the XGBoost predic-
tion model could be enhanced by determining the optimal
combination of hyperparameter values. Grid search, random
search, and Bayesian optimization methods are the most
common techniques to tune machine-learning models.18 In
this study, the hyperparameters of the model were optimized
through k-fold cross-validations combined with randomized

and grid searches. The initial hyperparameters were deter-
mined by the randomized search, and then the acquired
ones were further optimized using the grid search. Subse-
quently, the training dataset was randomly divided into k
folds, in which (k − 1) folds were utilized for the model
training, and 1-fold was used for performance assessment
during the k-fold cross-validation process. Such a process
would be repeated k times, where each of the k subsam-
ples was employed once as the validation data. 10-fold
cross-validation was used in this study. Hence, during each
cross-validation process, 90% of the dataset was used as the
training set, while the remaining 10% was used for perfor-
mance assessment of the model. Results of the randomized
and grid searches are summarized in Table 5.

Prediction Results and Discussions

Performance evaluation of the XGBoost model

As introduced in Sect. 2, the XGBoost algorithm builds
the sequential trees. With this regard, a single XGBoost
decision tree from the training model is presented in Fig. 5.
As shown in Fig. 5, the root node was Ag, and the second
layers were e and tfrp, respectively. These observations were
consistent with the correlation analyses as presented in Sect.
3. In addition, the regression error and residual values of the
predicted Pmax using the XGBoost model could be obtained,
and the predicted Pmax was illustrated in Fig. 6. As seen
from this figure, the XGBoost-predicted Pmax was generally
close to the experimental results, with the R2 of 0.994. Thus,
the developed XGBoost model could provide the acceptable
Pmax for FRP-confined corroded RC columns.

Table 6 summarizes the performance metrics of the
XGBoost predictions of the training and testing datasets
for different models, respectively. As seen from Table 6, for
different models, the accuracy of the training dataset was
generally superior to the testing one. For example, for the
model of all data, values of R2, RMSE, MAE, and MAPE
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Figure 4. Linear regression analyses of the Pmax versus the input variables

with the model for the training process were 0.993, 56 kN,
13.4 kN, and 2%, respectively, whereas those for the testing
procedure were 0.978, 122 kN, 70.6 kN, and 7.7%, respec-
tively. This suggests that the developed XGBoost model
exhibited both good learning and predicting capacity. Addi-
tionally, values of MAPE for all the ML models were smaller
than 10%, indicating the prediction accuracy of the devel-
oped XGBoost model was excellent.18 Thus, this further
demonstrated that the developed XGBoost model showed
superior effectiveness and accuracy in determining Pmax of
FRP-confined corroded RC columns.

Fig. 7 shows the feature importance based on the devel-
oped XGBoost predictive model. This figure indicates how

each input variable affected the XGBoost model’s predic-
tions. The feature importance was automatically calculated
by the XGBoost algorithm. F scores of the predictive model
could be determined by three different evaluation criteria,
including (i) weight, (ii) gain, and (iii) cover scores.18 In
specific, the F scores were obtained based on the number of
times a feature appeared in a tree (XGBoost weight score),
the average gain of splits using the feature (XGBoost gain
score), or the average coverage of splits using the feature with
coverage being defined as the number of samples affected by
the split (XGBoost cover score).18 There is a direct relation-
ship between feature importance and the value of the F score.
As observed from Fig. 7, the feature importance determined
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Table 5. Randomized and grid search values investigated by the hyperparameter tuning and cross-validations

Hyperparameters Description Lower limit Upper limit Best hyperparameters

All data Concentric Eccentric

n_estimators Number of gradient-boosted
trees

0 200 150 150 150

max_depth Maximum tree depth for base
learners

1 13 8 7 6

learning_rate Step size shrinkage used in the
update to prevent overfitting

0.1 1 0.11 0.25 0.2

subsample Subsample ratio of the training
instances

0 1 1 1 1

colsample_bytree Subsample ratio of columns
when constructing each tree

0 1 1 0.95 0.75

alpha L1 regularization term on
weights

0 1 1 0.85 0.85

Figure 5. Single XGBoost decision trees from the trained model

by using different evaluation criteria was inconsistent. For
example, by using the weight score as the evaluation crite-
rion, the five most significant parameters influencing the
predictions of Pmax of the columns were η, tfrp, Ag, f c, and
ρs, whereas that were Ag, Fbar, e, Efrp, and tfrp; as well as
η, Ebar, tfrp, f c, and Fbar, respectively, by employing the
gain and cover scores as the evaluation criteria, respectively.
Such an inconsistence in the predicted feature importance
from the XGBoost model based on different evaluation
criteria could lead to the interpretation and explanations
of the model’s predictions being contradictory. However,
this is inevitable because the traditional XGBoost models
could have inconsistent assessments of feature importance;
similar observations were also found in several previous

studies.18,51,56,81 Thus, an additional analysis of the signifi-
cance of feature parameters was conducted and presented in
the following subsection.

Explanation of the XGBoost model

Fig. 8 shows the SHAP summary plot and the relative feature
importance of the input variables. As shown in Fig. 8, the
SHAP plot illustrates the SHAP value for each variable,
and the color represents the feature value from low (blue)
to high (red). In addition, as shown in Fig. 8, the six most
significant parameters influencing the prediction of Pmax of
the columns were Ag, tfrp, Efrp, e, η, and f c, respectively.
This observation agreed well with the correlation analysis
in Sect. 3.2, indicating Pmax of FRP-confined corroded RC
columns mainly relied on these featured parameters (i.e., Ag,
tfrp, e, Efrp, f c, and η, respectively). In addition, as shown in
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Figure 6. Regression error and residual values of XGBoost model: (a) prediction error; (b) residual values

Table 6. Performance metrics of XGBoost models

Models Training dataset Testing dataset

R2 RMSE (kN) MAE (kN) MAPE (%) R2 RMSE (kN) MAE (kN) MAPE (%)

All data 0.993 56 13.4 2 0.978 122 70.6 7.7
Concentric 0.991 64.6 15 1.3 0.975 99.7 65.9 7.2
Eccentric 0.999 9.57 4.75 3.8 0.984 31.3 18.5 8

Figure 7. Feature importance based on XGBoost model: (a) weight; (b) gain; (c) cover

Figure 8. (a) SHAP summary plot and (b) the relative importance of each feature
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Figure 9. Explanation of typical individual prediction for (a) specimen No. 2 and (b) specimen 47

Table 7. Summary of existing models for predicting the axial ultimate strength of FRP-confined RC columns

Selected
models

Cross-
section

Model Supplementary notation

Youssef
et al.44

Circular
fcu

fco
= 1 + 2.25 ·

(
fl

fco

)1.25

f l is the lateral confining stress at the ultimate condition

of the FRP jacket, which is represented by: fl = 2Efrptfrpεfu
D or b

ke is the confinement effectiveness coefficient, which is

represented by: ke =
1 −

[
(b − 2rc)

2 + (h − 2rc)
2

3bh

]
− As

bh

1 − As

bh

Rectangular
fcu

fco
= 0.5 + 1.225 ·

(
kefl

fco

)0.6

Wei
and
Wu44

Circular &
rectangu-
lar

fcu

fco
= 1 + 2.2 ·

(
2rc

b

)0.72

·
(

fl

fco

)0.94

·
(

h
b

)−1.9

fl = 2Efrptfrpεfu

Dorb

Cao
et al.45

Circular &
rectangu-
lar

fcu

fco
= 1 + 8.34 ·

(
El

Ec

)1.03

(
2rc

b

)0.81 (
30
fco

)0.54 (
h
b

)−1.9 (
εfu

εco

)0.82

El is the confinement stiffness, which is represented by:

El = 2Efrptfrp

D or b

Note: D is the diameter of circular columns; h is the length of the longer side of cross-section of the rectangular columns; b is the length of the shorter side
of cross-section the rectangular columns or the side of the square columns; rc is the corner radius; Ec is the elastic modulus of concrete; As is the total area
of longitudinal reinforcements in a column; f co is the compressive strengths of the unconfined concrete; f cu is the ultimate axial compressive stress of the
FRP-confined concrete; εco is the peak strain of the unconfined concrete; and εfu is the ultimate tensile strain of FRP from the coupon tests.

Fig. 8(a), a high value of Ag, tfrp, Efrp, and f c tended to boost
the predictions of Pmax of columns up, while low values could
decrease the predictions. However, a high value of e and η

tended to decrease the predictions, whereas a small value of
e and η could increase the predictions.

Fig. 9 presents the explanation of predictions for
specimens No. 2 and No. 47, respectively, which were
experimentally tested under the concentric and eccentric
loads, respectively. As illustrated in Fig. 9, the red arrows
indicate the positive SHAP values and features that push
up the model’s predictions, whereas the blue arrows denote
the negative SHAP values and features that push down the
predictions. The base value was the average predicted Pmax

of the columns over the whole training dataset. As seen from
Fig. 9, the XGBoost model’s predicted Pmax of specimens
No. 2 and No. 47 were 720.74 and 102.78 kN, respectively.

The corresponding experimental test results were 720.60
and 101.65 kN, respectively. Hence, the XGBoost model’s
predicted Pmax of these two specimens agreed well with the
test results, indicating the superior prediction effectiveness of
the XGBoost model. For specimen No. 2, Fbar and e were the
most critical parameters that pushed up the base value, while
f c, tfrp, η, Ag, and Efrp decreased the base value. Similarly, for
specimen No. 47, Efrp was the most crucial input variable,
increasing the base value, whereas Ag, e, tfrp, Fbar, η, and f c

decreased the predictions.

Verification of the XGBoost predictive model

To further validate the effectiveness and feasibility of the
XGBoost model, the predicted Pmax of FRP-confined cor-
roded RC columns was compared to those predicted by the

21425005-14 BER Open: Int. J. Bridge Eng., Manage. Res.

BER Open: Int. J. Bridge Eng., Manage. Res., 2024, 2(1): 21425005



Table 8. Statistics performance metrics of the XGBoost model and existing empirical models

Models Average R2 RMSE (kN) MAE (kN) MAPE (%)

XGBoost model 1.005 0.994 70.3 46.9 7.2
Youssef et al.43 1.148 0.897 338 250.1 23
Wei and Wu44 1.287 0.898 395.5 305 30.6
Cao et al.45 1.285 0.895 388.3 298.3 30.4

Figure 10. Comparative performance results of the XGBoost and the existing empirical models

empirical models available in several previous studies.43–45

To date, there are many empirical models in predicting
Pmax of FRP-confined RC columns, but this paper only
selected three representative ones43–45 for analysis, which are
summarized in Table 7. As seen from Table 7, the impacts
of steel rebar corrosion on the mechanical performance
of columns were not considered in these selected empiri-
cal models. Thus, to consider the corrosion effects on the
degradation of mechanical properties of steel bars and FRP
confining pressure, the design models in determining the
Pmax of FRP-confined corroded RC columns should be mod-
ified accordingly. According to several previous studies,37,82

degradations of the mechanical performance of steel bars
and FRP confining pressure of FRP-confined corroded RC

columns can be considered based on the corrosion rate (η):

As
∗ = (1 − η) · As0 (24)

εrup
∗ = (1 − 0.462η) · εrup (25)

where As0 and εrup are the initial cross-sectional area of steel
bars and rupture strain of FRP before corrosion, whereas
those after corrosion are represented by As

∗ and εrup
∗, respec-

tively. The statistical results of XGBoost and the empirical
models43–45 are presented in Table 8.

As seen from Table 8, values of R2, RMSE, MAE, and
MAPE of the XGBoost model were 0.994, 70.3 kN, 46.9 kN,
and 7.2%, respectively, whereas that of the empirical model
suggested by Wei and Wu44 were 0.898, 395.5 kN, 305 kN,
and 30.6%, respectively. Hence, the XGBoost model showed
the best prediction results with the largest value of R2 and the
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Figure 11. Comparative performance results of the XGBoost and other ML models

Table 9. Statistics performance metrics of XGBoost and other ML models

Model Training dataset Testing dataset All data

R2 RMSE (kN) MAE (kN) MAPE (%) R2 RMSE (kN) MAE (kN) MAPE (%) R2 RMSE (kN) MAE (kN) MAPE (%)

XGBoost 0.998 56 13.4 2 0.978 122 70 7.7 0.994 70.3 46.9 7.2
DT 0.901 196.8 138.9 17.5 0.878 240.2 152.5 15.4 0.949 206.2 137.9 17.1
RF 0.967 116.2 68.3 8.8 0.940 167.8 100.6 9.8 0.974 148.5 95.3 11.5
GBDT 0.969 112.6 66.3 10.4 0.946 158.6 90.5 10.2 0.982 123.2 71.1 10.4

smallest prediction errors (RMSE, MAE, and MAPE). This
suggests that the feasibility and effectiveness of the XGBoost
model in predicting Pmax of FRP-confined corroded RC
columns outperformed these empirical models.43–45

In addition, Fig. 10 displays the comparative perfor-
mance results of the XGBoost and existing empirical models
within a discreteness range of ±10%. As observed from
Fig. 10, the XGBoost model exhibited the best prediction
performance compared to existing empirical models.43–45

Among these considered empirical models, the one suggested
by Youssef et al.43 tended to exhibit better predictions than
Wei and Wu et al.44 and Cao et al.,44 but the most of
prediction points generated by using these models were out-
side the desirable discreteness range (±10%), indicating the
significant dispersions of the prediction results. Moreover,

it is worth noting that the Pmax of FRP-confined corroded
RC columns calculated by these empirical models was higher
than the experimental ones. This is probably because the
modeling of the corrosion effects on FRP-confined corroded
RC columns is a complex problem. The simplified analysis
of the corrosion effects through degradation of the cross-
sectional area of steel bars (Eq. (24)) and reduction of the
rupture strain of FRP composites (Eq. (25)) could not be
effective and accurate enough.

Additionally, the XGBoost model was also compared
with several other ML algorithms, such as the decision tree
(DT), random forest (RF), and gradient boosting decision
tree (GBDT). Fig. 11 compares the prediction results of the
XGBoost model and the other three ML algorithms within
a discreteness range of ±10%. It could be observed from
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Table 9 and Fig. 11 that the RF and GBDT models exhibited
good predictive performance in predicting the Pmax of the
columns. Still, the prediction results of the DT algorithm
showed significant discreteness. Also, as seen from Fig. 11,
the majority of the prediction points generated through the
developed XGBoost model were inside the desirable dis-
creteness range (±10%), whereas the prediction points of
the other three ML models showed relatively pronounced
dispersions. This further validated the superior effectiveness
and capability of the XGBoost predictive model in predicting
Pmax of FRP-confined corroded RC columns, compared to
the other three ML algorithms.

Conclusions

This study proposed a novel explainable machine learning
(ML) model for the prediction of the axial load-carrying
capacity (Pmax) of FRP-confined corroded RC columns
using the XGBoost algorithm and SHAP technique. The
explainable XGBoost predictive model was established based
on a thorough database of experimental tests for 285 FRP-
confined corroded RC columns subjected to concentric and
eccentric loadings. 20 parameters were selected as the critical
input variables. Then, the SHAP technique was employed
for the important evaluation and interpretation of the pre-
diction performance of the model in predicting the Pmax of
the columns. Additionally, the effectiveness and accuracy
of the developed XGBoost predictive model were validated
through several empirical prediction models reported in the
literature and some popularly used ML algorithms (DT,
RF, and GBDT). Finally, the following conclusions are
summarized:

1. A novel, explainable XGBoost decision tree-based
ML method was proposed for quantitatively pre-
dicting Pmax of FRP-confined corroded RC columns.
The developed XGBoost predictive model was
demonstrated to be capable and effective with good
prediction performance and accuracy.

2. The proposed XGBoost predictive model could
achieve good prediction interpretability using the
SHAP technique. The feature importance of the
selected critical variables could be quantitatively stud-
ied, and the most important ones influencing the
prediction of Pmax of FRP-confined corroded RC
columns were Ag, tfrp, Efrp, e, η, and f c, among the
considered input variables.

3. The developed XGBoost model exhibited excellent
prediction performance and accuracy in predicting the
Pmax of FRP-confined corroded RC columns. Values
of R2, RMSE, MAE, and MAPE of the XGBoost
model were 0.978, 122 kN, 7036 kN, and 7.7%,
respectively. The prediction effectiveness and capabil-
ity of the model in predicting Pmax of the columns
significantly outperformed those of the existing empir-
ical models. Also, the developed XGBoost predictive
model was able to achieve superior predictions than
the DT, RF, and GBDT algorithms.

4. The proposed XGBoost predictive model could
provide new insights for addressing traditional engi-
neering issues involving many critical influential
parameters. In addition, if the database could be fur-
ther enriched in the future, this developed XGBoost
predictive model should be continuously updated and
thereby making its prediction performance and accu-
racy superior and more reliable.

Although the developed XGBoost predictive model
was suitable for predicting the load-carrying capacity of
FRP-confined corroded RC columns, it also has several
limitations. For instance, the database was constructed from
285 FRP-confined corroded RC columns collected from the
existing studies (231 specimens) reported in the literature and
those performed by the authors (54 specimens). The com-
pleteness of the experimental data, structural dimensions,
environmental conditions, non-uniform corrosion effects,
testing quality, and distributions of the input parameters
play critical roles in the prediction accuracy and effectiveness
of the developed XGBoost models. Thus, to further improve
the prediction accuracy and effectiveness of the model, the
experimental database, input feature variables, and the inter-
actions among these considered variables should be updated
and enriched with more test data. In addition, the general-
izability of the SHAP explanations and XGBoost predictive
results might be limited to the ranges of the input data tested,
in addition to the cross-validation process, more advanced
techniques, such as the Grid search, random search, and
Bayesian optimization methods could be incorporated, to
reduce the risk of overfitting. Moreover, the effectiveness and
feasibility of the developed XGBoost predictive model were
only validated against several empirical prediction models
and some popularly used ML algorithms, such as the deci-
sion tree (DT), random forest (RF), and gradient boosting
decision tree (GBDT). However, the developed XGBoost
predictive model should be verified in the future through
more advanced interpretable machine learning or deep learn-
ing models. Overall, the measured errors of the XGBoost
predictions were very low from the perspective of engineering
practice. XGBoost is an accurate tree-boosting system and
it is designed as a regularized model formalized to control
overfitting. Using the trained XGBoost predictive model,
the user can theoretically predict the load-carrying capacity
of FRP-confined corroded RC columns and other similar
problems based on the assembled experimental database,
which would have great application potential in practical
engineering practice.
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