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Abstract: The significant socio-economic impacts of aging infrastructure have driven the growing implementation of
Structural Health Monitoring (SHM) worldwide as a key preventive maintenance strategy. However, scaling SHM
systems nationwide presents significant hardware and software challenges, particularly in managing densely instrumented
structures and deploying effective damage identification algorithms. This explains the circumstance that most SHM
software tools are custom-built by specialized research groups, limiting technology transfer. In this context, although
still in its early stages, the latest advances in Artificial Intelligence (AI) offer promising solutions to overcome these
scalability issues. In this line, this work introduces the latest developments of MOVA/MOSS, a comprehensive SHM
software platform developed by the authors that leverages AI to accelerate feature extraction in vibration-based
systems and generate digital twins for quasi-real-time structural identification. The potential of the developed platform
is demonstrated through a real-world structure, the Mendez Nuñez Bridge in Spain, highlighting AI’s potential in
facilitating the widespread adoption of SHM.
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Introduction

Tragic collapses, such as the Genoa Bridge in 20181 and the
Nanfang’ao Bridge in 2019,2 are stark examples of the signif-
icant risks posed by aging infrastructure. Nonetheless, while
considerable investments have been made in SHM since the
1970s, traditional methods relying on periodic visual inspec-
tions and corrective maintenance remain predominant.3 The
widespread adoption of more effective SHM techniques
is hindered by their highly specialized complexity and the
lack of accessible tools for converting monitoring data into
decision-making. This is evident in the limited availability of
dedicated software solutions, with most existing platforms
focusing on vibration testing and failing to offer a compre-
hensive framework for managing SHM systems. However,
recent advances in AI may mark a turning point for SHM,
potentially enabling its widespread adoption on a national
scale.4
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Effective management of long-term SHM systems
requires integrating three key stages, treating the SHM
process as a statistical pattern recognition problem:5

(i) feature extraction, (ii) data normalization, and (iii)
damage identification. Feature extraction involves identi-
fying damage-sensitive signatures from raw measurements.
Vibration-based systems employing Operational Modal
Analysis (OMA) are particularly popular owing to their abil-
ity to detect global damage and their minimal intrusiveness.6

However, due to their limited effectiveness in identifying
local defects, it is often necessary to integrate other
technologies with higher local detection capabilities, such
as static sensors. Additionally, monitoring operational/envi-
ronmental conditions (EOC) is often crucial, as they tend to
induce daily/seasonal variations in the structural response.7

In this context, data normalization plays a critical role
in eliminating variability in the selected features resulting
from EOC variations.8 Finally, the normalized features
can be used to tackle the damage identification problem
through either data-driven (unsupervised) or model-driven
(supervised) methods.9 Data-driven strategies rely solely on
monitoring data to detect structural anomalies, while model-
driven techniques involve inverse calibration of a machine
learning or physics-based model of the monitored structure.
Integrating all these steps into a comprehensive software
platform presents significant challenges, particularly in man-
aging vast monitoring databases from large-scale, densely
instrumented structures within a Big Data framework, as
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well as providing the flexibility to fine-tune appropriate
damage identification algorithms.10

In the feature extraction phase, OMA of large-scale,
densely instrumented structures presents significant chal-
lenges from both software and hardware perspectives.
Currently, available automated OMA algorithms, espe-
cially those based on Stochastic Subspace Identification
(SSI),11 demand considerable hardware and computational
resources, limiting or impeding on-site edge computing or
requiring the transfer of large databases for offline pro-
cessing. In this context, recent advancements in AI offer
promising opportunities to enhance the computational effi-
ciency of these algorithms, accelerating modal identification
and reducing computational demands. Although still in the
early stages of development, studies by Liu et al.12 and Shu
et al.13 illustrate the potential of deep learning techniques for
SSI and Blind Source Separation (BSS), achieving compara-
ble accuracy to traditional OMA methods with significantly
lower computational requirements. Similarly, recent work
by some of the authors introduced an innovative Multitask
Learning Deep Neural Network (MTL-DNN) model for
fast second-order blind source identification (SOBI).14 Jian
et al.15 also introduced a Graph Neural Network (GNN)-
based deep learning scheme to identify modal properties of
arbitrary truss structures (including simply-supported and
cantilever configurations), achieving high computational
efficiency and promising results in terms of accuracy. These
encouraging results underscore the potential of AI-driven
OMA techniques for rapid dynamic identification, paving
the way for broader adoption of vibration-based SHM tech-
nologies for large-scale infrastructure systems.

A second key challenge in developing comprehensive
SHM software is the integration of structural Digital Twins
(DTs) for model-driven damage identification. In a broader
sense, a DT is a physics-based or machine learning model
that consistently utilizes monitoring data to infer and clas-
sify the health status of the physical asset, enabling timely
interventions.16 Recent advances in surrogate models (SMs)
or meta-models have greatly facilitated the development
of DTs by replacing high-fidelity, computationally inten-
sive numerical models (often finite element models [FEMs])
of large-scale structures.17 In this light, there has been a
growing number of publications on the development of
continuous deterministic18 and probabilistic19,20 DTs capable
of providing fast damage identification by inverse cali-
bration of local structural parameters, also referred to as
model updating. In this context, recent research efforts,
such as the works of Jayasinghe et al.21 and Huang et al.,22

showcase the potential of AI techniques for developing
ultra-fast, physics-informed DTs with large potential for
modeling complex non-linear responses with high accu-
racy. Nonetheless, despite these advancements, DT usage
remains largely confined to academic environments and
proprietary software scripts, with no existing commercial
platforms currently offering a standardized environment for
their development and implementation.

In view of the identified gap in the availability of widely
implementable SHM software solutions, this work presents
new updates to MOVA/MOSS, an in-house SHM software

platform that integrates innovative AI solutions to address
the scalability limitations of existing SHM methods. Origi-
nally developed by García-Macías and Ubertini,23 the latest
update to the platform introduces new AI solutions in
both the feature extraction and damage identification phases
within the SHM process as a statistical pattern recognition
problem. In the feature extraction phase, the platform sup-
ports the integration of any pre-trained AI model to extract
modal properties (resonant frequencies, damping ratios, and
mode shapes) from ambient acceleration records. As an
example of this capability, the MTL-DNN model developed
by Hernández-González et al.24 is incorporated. Further-
more, the platform facilitates the creation of structural
DTs by generating a training population from any FEM
developed in SAP2000, training any chosen AI model, and
utilizing the resulting meta-model for continuous, supervised
damage identification. Specifically, a novel feed-forward
DNN model is introduced, capable of reproducing a set of
resonant frequencies and mode shapes, demonstrating its
integration potential within MOVA/MOSS. The remainder
of this paper details the fundamentals of these modules and
demonstrates their application on a real-world bridge: the
Méndez-Núñez Bridge in Granada, Spain.

Modular Software Architecture for Long-
Term SHM

MOVA and MOSS build on the research group’s decade-
long experience in SHM of civil engineering structures.
MOVA specializes in Ambient Vibration Testing (AVT),
while MOSS is designed for the autonomous management
of long-term integrated SHM systems. The primary purpose
of MOSS is to enable fully autonomous oversight and man-
agement of permanent SHM systems, incorporating diverse
sensing technologies, including dynamic, static, and environ-
mental monitoring.

The typical workflow of an SHM system utilizing MOSS
is outlined in Fig. 1, which materializes the paradigm
of SHM as a statistical pattern recognition problem
within a comprehensive software platform. The monitor-
ing system consists of an integrated sensor network that
continuously acquires monitoring data (both dynamic and
non-dynamic) over a specified time duration, which are
stored in separate computer files. After inputting the relevant
directories (either locally or via cloud-based FTP protocols),
MOSS automatically identifies and processes newly acquired
records. Specifically, acceleration data are processed through
a five-step sequence involving (i) signal pre-processing, (ii)
automated OMA, (iii) modal tracking, (iv) elimination of
environmental effects, and (v) control charts for online
anomaly detection. Simultaneously, MOSS extracts features
from static data using basic statistical metrics (e.g., mean,
max/min, root mean square error), which serve as predictors
(for removing EOCs) and/or damage-sensitive estimators,
as defined by the user. Additional damage-sensitive features
can be extracted by introducing a DT in MOSS, which
extracts a time series of local fitting parameters by exploit-
ing both static and/or dynamic data through inverse model
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Figure 1. Schematic of a permanent SHM system managed by MOSS

calibration. Based on this, MOSS enables the definition of
multiple control charts and performs simultaneous online
damage detection of various damage-sensitive features. As
mentioned above, the most computationally intensive oper-
ations in this workflow are the automated OMA and the
assessment of the DT. To address this, two flexible AI plat-
forms are introduced in MOSS, as described hereafter.

The seamless integration of new modules into the general
workflow of MOSS is enabled by its highly flexible modular
architecture. Specifically, MOVA and MOSS are organized
around two core standalone C++ graphical user inter-
faces (GUIs), originally developed using MATLAB (Fig. 2).
These GUIs call independent GUIs or scripts corresponding
to the previously indicated modules, passing information
between them via standardized structure arrays. In this work,
we focus on the inclusion of AI tools for automated OMA
and the development of structural DTs for model-driven
damage identification. For a detailed description of the
remaining modules, interested readers can refer to García-
Macías and Ubertini.23

AI-Driven Operational Modal Analysis

The new module in MOVA/MOSS for implementing AI-
driven algorithms is depicted in Fig. 3. The process begins
by loading a standardized Python script (.py) to execute the
prediction of a pre-trained Pytorch (.pt) or TensorFlow (.h5)
neural network (NN) via a dedicated GUI (Fig. 3a). This
Python script is designed to take as an input a standard-
ized MATLAB file (.mat) containing the ambient vibration
data previously processed by MOVA/MOSS along with the
acquisition sampling frequency and outputs the dynamic
identification parameters (i.e., frequencies, mode shapes, and
damping) through a binary MATLAB MAT-file. The output
file follows a standardized naming protocol for the dynamic
identification variables, and it can include any additional
variables of interest for the visualization of the identification
results. For the latter, a MATLAB script (.m) can also be
loaded, which contains a custom function designed to visu-
alize the results generated by the NN in the main GUI for
dynamic identification (Fig. 3b) using the additional vari-
ables of interest. Once loaded, MOVA/MOSS executes the
AI algorithm by launching the Python interpreter through
the Command Prompt in Windows, which is applicable to

both MOVA for AVT and MOSS for continuous OMA. The
architecture is designed with maximum flexibility, allowing
for the incorporation of any AI-driven OMA model, as
well as any general dynamic identification algorithm imple-
mented in Python.

In this work, the MTL-DNN model presented in
Hernández-González et al.24 is implemented for illustra-
tive purposes. For completeness, the fundamentals of this
model are concisely outlined herein. Assuming the structure
behaves as a linear time-invariant system and that a number
l ∈ N

∗ of natural modes of vibration are excited, the system’s
response x(t) ∈ R

m monitored by m ∈ N
∗ sensors deployed

on the structure can be expanded using modal superposition
as:

x (t) = � q (t) =
l∑

i=1

ϕiqi (t), (1)

where � ∈ C
mxl is the modal matrix composed by l mode

shape vectors ϕi ∈ C
m, and q (t) = [q1 (t), . . . ., ql (t)]

T

represents the modal displacement vector. To facilitate the
extraction of complex-valued mode shapes, it is convenient
to augment the measured data x (t) into its analytic form
using the Hilbert transform (H), as reported by McNeill and
Zimmerman.25 The Hilbert transform introduces a phase
shift of 90 degrees, that is x̌ (t) = x (t) + ix̃ (t), where x̃ (t) =
H (x (t)) and i denotes the imaginary unit. The fundamental
hypothesis of BSS states that x̌ (t) can be expressed as a linear
combination of a set of independent components š (t) as:

x̌ (t) = Aš (t) + n (t), (2)

where A ∈ C
mxl is the so-called mixing matrix, and n (t)

represents a zero-mean temporally and spatially station-
ary white noise. Then, by comparing Eqs. (2) and (1), the
dynamic identification problem reduces to estimating š (t)
and A as equivalent magnitudes for the modal displacements
(which contain information about the resonant frequencies
and damping ratios) and the modal matrix, respectively. The
SOBI technique addresses this task by seeking the inde-
pendent components that produce approximately diagonal
time-shifted covariance matrices, relying on second-order
statistics. To facilitate this, it is beneficial to first whiten the
observed data using principal component analysis (PCA).
This is achieved through eigenvalue decomposition of the
covariance matrix of observations, that is E

{
x̌ (t) x̌ (t)T} =
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Figure 2. Core GUIs of MOVA (a) and MOSS (b)

Figure 3. Module developed for the implementation of AI-driven OMA methods (a) and the dynamic identification
GUI (b) in MOVA/MOSS

Rx (0) = EDET, where D and E correspond to the diag-
onal eigenvalue and the orthogonal eigenvector matrices,
respectively. Consequently, the whitened data is obtained as
z (t) = Wmx̌ (t), with Wm = D−1/2ET being referred to as the
whitening matrix. Utilizing z (t), the second step in the SOBI
algorithm involves estimating an orthogonal matrix � that
approximately diagonalizes several time-shifted covariance
matrices with time lags τi, 1 ≤ i ≤ p. The joint approximate
diagonalization (JAD) algorithm proposed by Belouchrani
et al.26 enables this to be expressed mathematically through
an optimization problem as:

�TRz (τi)� ≈ diag [ρ1 (τ ), . . . , ρm (τ )]

⇒ min
Ψ

p∑
i=1

off
(
�TRz (τi)�) , 1 ≤ i ≤ p, (3)

where Rz (τ) is the time-shifted covariance matrix of
the whitened data, and the terms pi (τi) denote their

autocovariances. Thus, the independent components š and
the mixing matrix A can be obtained as:

A = W−1
m � = ED1/2�, and š = W x̌, (4)

with W = A−1 denoting the de-mixing matrix. Given that
both the mixture matrix and the independent components
are complex-valued, one can write:

A = AR + i AC, s = sR + i sC , with AR, AC ∈ R
m×n,

sR, sC ∈ R
n×1, (5)

where the R and C indexes correspond to the real and imag-
inary parts of the respective terms. Therefore, substituting
Eq. (5) into (2), the system’s response x can be expressed as
a linear combination of the real and imaginary parts of s (t)
as:

x (t) = (AR + i AC) (sR (t) + i sC (t)) = AR sR (t) − AC sC (t).
(6)
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Therefore, the system’s response can be estimated as a
linear combination of the products of the real and the imagi-
nary parts of the independent components multiplied by the
corresponding real and complex parts of the modal matrix.
This relationship can be represented using two fully con-
nected layers with linear activation functions that model the
system’s response and the independent components, where
the weights correspond to the real and imaginary parts of the
modal matrix. Following this intuition, the NN architecture
depicted in Fig. 4 was originally proposed by Hernández-
González et al.14 The NN takes the acceleration time series
x (t) as input and outputs the reconstructed signal x’ (t),
generated after applying Eq. (6) with the estimated mixing
matrix. Notably, the classical SOBI algorithm presented
in McNeill and Zimmerman25 is primarily suited for the
determined identification problem (i.e. m ≤ l), meaning the
number of identifiable modal properties is less than or equal
to the number of sensors. To address the undetermined case,
as it is common in practice, SOBI can be applied iteratively
to the system’s response band-pass filtered within b different
frequency ranges of interest (Δfb) and used as input to the
NN (see Fig. 4), allowing for the estimation of a maximum of
b · m independent components. Furthermore, to capture the
sequential nature of the time series, a time lag τ is introduced
between the observed data x (t) and the network’s outputs,
namely s (t) and x’ (t). After the input layer of b · m neurons,
a series of d dense layers are employed to emulate both the
whitening process and the JAD. The subsequent part of the
network is split into two dense branches, J and K, of h dense
layers and g number of neurons, except for the last layers of
these two branches that contain n ≤ b · m neurons, equal
to the number of independent components of interest. This
division serves the primary purpose of separating the real
and complex parts of the independent components into lay-
ers R and C, respectively. Finally, to improve generalization,
the second and the second-to-last layers of the first set of

dense layers, as well as the second-to-last layers of branches
J and K, are regularization (dropout) layers.

For the supervised training of the NN using the SOBI
algorithm, both the reconstructed signals and the output of
the branches R and C are monitored. Based on these outputs,
the loss function for the MTL-DNN is defined as:

L = 1
N

[
n∑

l=1

N∑
i=1

(
Ril,τ − R̂il

)2 +
n∑

l=1

N∑
i=1

(
Cil,τ − Ĉil

)2

+
b×m∑
l=1

N∑
i=1

(
xil,τ − x̂il

)2

]
, (7)

where Ril,τ and Cil,τ represent the real and complex parts of
the modal response obtained by SOBI, respectively; R̂il and
Ĉil denote the corresponding real and complex parts pre-
dicted by the MTL-DNN, respectively; xil,τ and x̂il represent
the input and reconstructed data, respectively. The subscript
τ indicates that the corresponding terms are time-shifted
to align with the time sequence of the network’s output
sequence. The loss function L is minimized using the Adam
adaptive gradient descent backpropagation algorithm.

One trained, as mentioned earlier, the weights between
the last two layers, representing the independent components
and the reconstructed system’s response, directly yield the
complex-valued mode shapes. Additionally, the outputs of
both branches R and C can be used to extract the cor-
responding resonant frequencies and damping ratios. In
this work, the single-degree-of-freedom (SDOF) Ibrahim
Time-Domain (ITD) method, using the Natural Excitation
Technique (NExT), is adopted for this purpose.

AI-Driven Surrogate Models for Continuous
Supervised Damage Identification

The workflow for implementing a DT in MOSS includes
two main steps: (i) initial calibration of a FEM of the

Figure 4. Architecture of the MTL-DNN for multi-frequency band operational modal analysis
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structure, and (ii) creation of a SM. For the first step, a
specific module in MOVA allows users to introduce and
inverse-calibrate a SAP2000 model provided in the form of
an Excel database (.xlsx) (Fig. 5a). In this module, users
can introduce various fitting parameters through a simple
configuration file created in a separate Excel spreadsheet.
In this file, users can select a variety of fitting parameters
such as material properties, stiffness of beams or shells,
linear springs, added masses, etc., specifying their labels,
nominal (reference uncalibrated) values, and maximum/min-
imum variation ranges. Afterward, the module enables users
to conduct a sensitivity analysis of the model parameters
(frequencies and mode shapes) by finite differences, offer-
ing the option to deselect low-sensitivity parameters or
group them based on their sensitivities. This grouping is
achieved through a hierarchical clustering approach using
the Unweighed Pair Group Method with Arithmetic Mean
(UPGMA) (see García-Macías and Ubertini19 for further
details), which helps reduce the number of fitting parameters.
In these analyses and in all subsequent evaluations of the

SAP2000 model, the module directly executes the simula-
tions via the SAP Open Application Programming Interface
(OAPI).

Afterward, the user can select from three different
optimization algorithms: genetic algorithm (GA), particle
swarm optimization (PSO), or gradient-based optimization.
The user can specify their hyperparameters, including con-
vergence tolerance, number of interactions, and number of
genes/particles in case of GA or PSO (Fig. 5b). Moreover,
the user can customize the objective function for inverse
calibration. Let us consider t fitting variables xi ∈ R, i =
1, . . . , t, used to parametrize the original FEM, constrained
within the user-defined range D = {x ∈ Rt : ai ≤ xi ≤
bi}. On this basis, the model parameters are estimated by
solving the minimization problem x̂ = arg minx∈D J(x),
where J(x) represents the objective function that quantifies
the discrepancy between experimental data and model pre-
dictions. If n resonant frequencies and mode shapes have
been identified in the AVT, the software defines a generic

Figure 5. Main window of the MOVA module for model updating of SAP2000 FEM models (a), screenshot of the
model calibration process (b), and interface for model validation (c)
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objective function as:

J (x) =
n∑

i=1

[
αεf ,i(x) + βεϕ,i(x)

] + ηR(x), (8)

where the terms εf ,i(x) and εf ,i(x) denote the i-th errors
in terms of resonant frequencies and mode shapes, respec-
tively, according to the user-defined settings. Specifically,
for frequencies, users can choose between the mean/max
squared error and mean/max relative error, while for mode
shapes, they can select either the mean squared errors
of the modal displacements or the mean/max value of
1 − MAC(ϕFEM , ϕexp). Here, MAC(ϕFEM , ϕexp) denotes the
modal assurance criterion between the mode shapes pre-
dicted by the model and the experimental mode shapes.
The terms α, β, and η in Eq. (8) are weighting coefficients,
while the last term, R(x), serves as a regularization term
to alleviate ill-conditioning in the optimization process. In
MOSS, a modified version of the conventional Tikhonov
regularization is implemented as:

R (x) = 1
t

t∑
i=1

(
xi − x0

i

)2

bi − ai
, (9)

where x0
i denotes the reference value of the i-th parameter.

Additionally, the software includes a mode matching algo-
rithm to pair numerical and experimental mode shapes. The
algorithm matches modes according to a metric involving
the relative differences in frequency and 1 − MAC values,
respectively weighted by two factors αm and βm.

Once relevant hyperparameters are defined and the cal-
ibration is started, the module displays the convergence of
the objective function, the mean relative errors in terms
of resonant frequencies, and 1 − MAC values (Fig. 5b).
Upon completion, the user can access a validation interface
(Fig. 5c), where the software presents a tabular comparison
between the experimental and numerical modes in terms

of relative errors in resonant frequencies and MAC val-
ues before and after the calibration, the auto-MAC matrix
between the numerical and experimental mode shapes, and
an interactive 3D graph that displays and animates the exper-
imental and numerical mode shapes.

Once the FEM of the structure is calibrated, the user
is ready for constructing the DT. In general, the FEMs of
civil engineering structures are computationally intensive,
which hinders their implementation for continuous SHM.
Therefore, it often becomes imperative to develop an SM
capable of bypassing the forward FEM with reduced com-
putational demands. For this purpose, MOSS provides a
specific module depicted in Fig. 6. This module first enables
the generation of training and validation datasets for the
construction of the SM. The user begins by defining the num-
ber of fitting parameters, their variation ranges, and the
number of samples to construct both the training and the
validation datasets. Assuming the user defines a population
of N individuals for the training set, input samples are drawn
uniformly over the design space D, creating a matrix of
design sites X = [x1, ..., xN ] ∈ R

m×N . To this aim, the user can
choose between Latin Sampling Hypercube and Sobol quasi-
random sequences. Fig. 6a shows a screenshot of the training
samples generated for the case study presented hereafter in
Section 5. Next, the corresponding outputs are obtained by
direct Monte Carlo Simulations (MCS) using the forward
FEM, producing an observation vector Y = [y1, ..., yN ]T,
with yi ∈ R. If a SAP2000 model is provided as mentioned
earlier, MOSS directly performs this operation. Alterna-
tively, the software allows exporting the training/validation
populations for externally running the FEM evaluations
and inputting the observation vector through a MATLAB
(.mat) file.

The resulting training population {X, Y}, also commonly
referred to in the literature as Experimental Design (ED),
is used to train the SM. MOSS offers a broad range of

Figure 6. Module in MOSS for generating surrogate models (a) and sub-module for integrating AI-driven digital twins (b)
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SM options, including second-order response surface mod-
els (RSM), Kriging, Polynomial Chaos Expansion (PCE),
and general SMs defined through a custom MATLAB
script (.m).

Additionally, the latest version of the software allows
users to introduce pre-trained AI models to work as SMs. A
dedicated interface, shown in Fig. 6b, facilitates this process.
In this window, users can choose between a general Python
script (.py) that calls a pre-trained NN, or a pre-trained
NN in TensorFlow 2.17 (.pb), compatible with MATLAB.
The former operates through standardized input/output
MATLAB-MAT files and the Windows Command Prompt,
similar to the approach previously introduced for AI-driven
OMA. The latter option directly allows for transforming
the pre-trained NN into a native MATLAB object, offering
improved computational efficiency.

Once the SM is constructed, it is ready for continu-
ous system identification. Users can utilize both static and
dynamic experimental data to define the objective function.
If only modal data are selected, users can customize the
objective function following the same formulation intro-
duced in Eq. (8). Alternatively, users can input a custom
MATLAB script (.m) with a standardized structure, allowing
for the definition of any function involving arbitrary combi-
nations of static and/or dynamic data. Once set, the defined
optimization problem is solved iteratively every time a new
acquisition arrives in MOSS, and the fitting parameters are
collected into an observation matrix X̂. This matrix serves
as a damage-sensitive estimator and can be processed like
any other estimator (e.g., resonant frequencies), including
EOC elimination and the construction of specific control
charts. For a detailed explanation of all MOSS functionali-
ties related to EOC elimination and control chart definitions,
readers can refer to García-Macías and Ubertini.23 Unlike
other features, such as modal signatures, persistent varia-
tions in any of the fitting parameters of the SM directly
indicate the location and severity of the damage.

Finally, the GUI presents various quality assessment
graphs for evaluating the accuracy of the SM, including
FEM versus SM scatter plots, and error quality metrics such
as coefficients of determination and mean squared errors.

Application Case Study: Méndez-Núñez
Bridge

To illustrate the potential of the AI tools introduced in
MOVA/MOSS for both automated OMA and DT defini-
tion, a real-world instrumented bridge is presented as a case
study: the Méndez-Núñez Bridge in Granada, Spain.

Description of the Structure

The Méndez-Núñez Bridge is a continuous five-span, 122.5-
meter-long post-tensioned concrete bridge with a variable
section located in the Spanish city of Granada, in the
Autonomous Community of Andalucía (Fig. 7). Built in
March 1989 by the Dirección General de Carreteras (General
Directorate of Highways) of the Province of Granada, the

bridge currently supports traffic over Avenida de Andalucía
between the municipalities of Jaén and Motril. The bridge
deck is supported by four central reinforced concrete
columns piers with sections measuring 3.40 m × 1.50 m,
founded on piles and pile caps, and two abutments consist-
ing of reinforced concrete retaining walls. All supports rest
on elastomeric neoprene bearing pads with dimensions of
0.90 m × 0.80 m × 0.15 m. For visual reference, Fig. 7a shows
two photographs of the current state of the structure.

As part of a national R&D project, a permanent
vibration-based SHM system was installed on September 27,
2023. The monitoring system comprises 10 uni-axial piezo-
electric accelerometers model KB12VD (μ10% 10.0 V/g,
broadband Resolution: 1 μg rms and ± 0.5 g pk) labeled
as A1 to A10 as shown in Fig. 7b. Ambient vibration data
are collected in separate 30-minute records at a sampling
frequency of 100 Hz, recorded by a data acquisition sys-
tem (DAQ) model cDAQ-9184, located on one of the piers.
Additionally, temperature data are recorded by four probes
model Pt 1000/3850 placed on the bridge deck, and humid-
ity data through a hygrometer model AM2315 controlled
using an independent Arduino Uno micro-controller, both
with an acquisition frequency of 5 minutes. Note that the
monitoring system generates approximately 19 GB of data
per month, underscoring the management of this system as
a Big Data problem. To handle this problem, automated
OMA is performed using a standard on-site computer with
MOVA/MOSS installed, and the identified modal properties
are automatically transmitted via the Internet for data visu-
alization and control. The raw time series are only stored
locally and collected periodically. In this work, the monitor-
ing records collected from September 27th, 2023, to October
18th, 2024, are analyzed to investigate the potential of the
developed AI algorithms.

To generate a structural DT of the bridge, a 3D FEM
of the bridge was developed using SAP2000, as shown in
Fig. 8. The model’s geometry was constructed based on
available structural drawings and in-situ inspections. Specif-
ically, the deck of the bridge was modeled using frame
elements with variable cross-sections and lumped torsional
masses. Additionally, the inner piers were modeled using
frame elements with variable-cross sections connected to
the bridge deck through vertical and longitudinal springs
with stiffness values extracted from the mechanical prop-
erties of the bearing pads and the Spanish standards. The
initial material model was assumed isotropic with an elastic
modulus of 35.0 GPa, Poisson’s ratio of 0.2, and a mass
density of 2.35 t/m3. To extract the modal displacements
at the points on the deck’s edges where the real sensors
are located, infinitely rigid massless frame elements are also
introduced in the model. Infinitely rigid massless elements
are also included to simulate the actual eccentricities between
the deck and the piers, abutments, and the foundations.
Finally, the post-tensioning cables are modeled by means
of internal forces following their actual parabolic profiles.
Preliminary analyses considering P-delta effects confirmed
that the prestressing forces play a negligible role in the modal
properties of the bridge, as also discussed in the literature
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Figure 7. Méndez-Núñez bridge: (a) general views of the bridge and monitoring system, (b) sensors layout (units in
meters)

Figure 8. Méndez-Núñez Bridge FEM in in SAP2000

(see, e.g., Abdel-Jaber and Glisic27). Therefore, their effect is
disregarded in the subsequent inverse model calibration.

The dynamic properties of the Méndez-Núñez Bridge
were identified using the covariance-driven SSI (CoV-SSI)
method in MOVA. As hyperparameters, the covariance
matrices were extracted considering a time lag of 3.2 s,
and the list of stable poles were extracted for model orders
ranging between 2 and 180, with tolerance criteria of 0.1%
for resonant frequencies, 0.5% for damping ratios, and 0.005
for MAC values. The identification of physical poles was
conducted through a hierarchical clustering approach, con-
sidering a cut-off distance of 0.01 (defined by the sum of the
relative variations in frequency and 1-MAC values), and a
minimum cluster size of 20 poles to consider a cluster as a
physical mode. On this basis, a total of eleven clear global
modes were identified in the frequency broadband up to
12 Hz, as depicted in the stabilization diagram in Fig. 9.
Specifically, the identified modes include five global bending
and six torsional modes, as reported hereafter in Fig. 10.

With these modal identification results, the FEM of the
bridge was calibrated in MOVA, discretizing the bridge deck
into eleven sections and considering their elastic moduli Ei

as fitting parameters (see Fig. 8). Assuming that the elastic

moduli may range between 31.5 GPa and 45.5 GPa, the
model was calibrated considering the previously reported
eleven global modes using the PSO algorithm (60 particles
and 65 generations). Maximum relative errors in terms of
frequencies and the mean of 1-MAC values were included in
the cost function (α = 1, β = 2, η = 0, αm = 1, βm = 0.8).
The comparison between the experimental and numerical
modal signatures before and after calibration is provided in
Table 1, in terms of relative errors in frequencies and MAC
values, and the corresponding mode shapes are depicted
Fig. 10.

AI-Driven Modal Identification

Following the multi-frequency band SOBI approach pre-
viously overviewed in Section 3, two different frequency
broadbands (b = 2) were necessary, namely 1–6 Hz and
6–11 Hz, to identify 20 target modes using the 10 avail-
able accelerometers. Following the general architecture of
the MTL-DNN previously introduced in Fig. 4, the specific
architecture for this case study, furnished in Fig. 11a, has
been implemented using the Python library PyTorch. To
generate the training dataset, the independent modal com-
ponents are extracted from the raw acceleration time series
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Figure 9. Stabilization diagram of the Méndez-Núñez Bridge extracted from CoV-SSI analysis of ambient
accelerations recorded on November 30, 2023, at 10:00 AM

Figure 10. Comparison between experimental and numerical mode shapes after model updating

by standard SOBI applied to the two considered frequency
broadbands independently.

The raw acceleration responses (30-min-long record,
180,000 samples) and the estimated independent compo-
nents are utilized as inputs and outputs to construct the
training dataset, incorporating an input/output time lag of
10-time steps (τ = 10 ms). The dataset is divided into train-
ing (80%), validation (10%), and test sub-sets (10%). The
activation functions used for all the hidden layers are set
to hyperbolic tangent (tanh), except for the last two layers,
which use linear activation. The learning rate, the batch size,
and the dropout rate are set to 0.001, 200, and 30%, respec-
tively, and the weights of the network are estimated using the

Adam back-propagation algorithm. The selection of these
hyperparameters was conducted after parametric analyses,
including different activation functions and optimization
algorithms to update the network weights, until finding
satisfactory results in terms of modal identification accuracy.
For further details on the architecture and definition of the
model hyperparameters, readers can refer to Hernández-
González et al.14 The results of the training convergence up
to 250 epochs are shown in Fig. 11b, indicating that optimal
model convergence is approximately achieved by epoch 110.
Notably, while the initial SOBI takes 9 minutes and 44 sec-
onds, the source identification using the MTL-DNN during
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Table 1. Comparison between experimental and numerical modal signatures before and after model updating

Uncalibrated Calibrated

Mode Num. f exp
i [Hz] f FEM

i [Hz] Rel. Err. [%] MAC f FEM
i [Hz] Rel. Err. [%] MAC

1 2.87 2.86 −0.46 1.00 2.87 −0.07 1.00
2 3.76 3.78 0.59 1.00 3.79 0.87 1.00
3 4.53 4.13 −8.75 0.95 4.61 1.75 0.95
4 5.05 5.01 0.19 0.99 5.07 0.50 0.99
5 5.31 4.79 −9.95 0.95 5.22 −1.75 0.96
6 6.14 5.73 −6.60 0.98 6.13 −0.05 0.98
7 6.42 6.39 −0.60 0.95 6.42 −0.07 0.95
8 6.81 6.88 0.95 0.99 6.93 1.74 0.98
9 7.24 6.84 −5.61 0.99 7.23 −0.25 0.99
10 8.31 8.20 −1.35 0.99 8.33 0.17 0.99
11 9.51 9.39 −1.24 0.99 9.67 1.74 1.00

Figure 11. MTL-DNN architecture for the dynamic identification of the Méndez-Núñez Bridge (a) and convergence
analysis (b)

the prediction step only takes 4.44 seconds, representing a
remarkable reduction in computational time.

The modal identification results of the first eleven modes
and their comparison with the CoV-SSI results are reported
in Table 2. The comparison reveals a close agreement
between the estimates provided by CoV-SSI and the MTL-
DNN model, with remarkably small relative differences in
frequencies, the maximum being 1.97% and the average
0.75%. Additionally, the MAC values are all very close
to 1.00, confirming an almost perfect correlation between
the CoV-SSI mode shapes and those estimated by the
MTL-DNN. However, the damping ratios estimated by
the MTL-DNN model are slightly lower. Nevertheless, the
damping ratios estimated by classical SOBI are very similar,
as shown in Table 2, with an average relative difference with
respect to the estimates by MTL-DNN of 3.24%. These
differences are attributed to the large uncertainty in damping
estimation, which is commonly observed in AVTs. To further
assess the model’s performance, Fig. 12 illustrates the first
six mode shapes estimated as the weights between the last
two layers of the MTL-DNN. Note that the developed AI
modal can effectively estimate complex-valued modes. This
is particularly evident in the complexity plots of Modes 5 and
6, which exhibit Modal Phase Collinearity (MPC) values of
93.6%, and 93.2%, respectively.

Finally, it is important to emphasize the critical need
to assess the ability of the MTL-DNN model to main-
tain modal identification accuracy when damage affects the
structural performance. In this case, since no real damage is
observed, it would be necessary to generate synthetic damage
data, possibly using the forward FEM illustrated in Fig. 8.
These analyses are left for future work. Interested read-
ers may refer to our previous work, Hernández-González
et al.,14 where the ability of the proposed MTL-DNN model
to generalize its modal identification capability beyond the
observed healthy dataset was demonstrated on a real labora-
tory steel frame.

AI-Driven Digital Twin for Fast Structural Identi-
fication

To define the DT, a feedforward neural network (FNN) was
designed in TensorFlow to replace the forward FEM of the
bridge described in Section 5.1. Since the primary objective
is its use for continuous system identification, the FEM is
parameterized with l = 20 fitting parameters, representing
the elastic moduli of the sections obtained by discretizing the
five spans into four equally long elements each. Specifically,
20 stiffness multipliers ki, i = 1, . . . , l, directly affecting the
elastic moduli, are considered as fitting parameters. These
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Table 2. Comparison between the estimates of the modal parameters of the Méndez-Núñez Bridge using CoV-SSI and MTL-
DNN (The MAC column denotes the MAC values between the mode shapes identified by CoV-SSI and MTL-DNN)

Mode Frequency [Hz] Damping [%] MAC

CoV-SSI MTL-DNN Rel.
Diff. [%]

SOBI Rel.
Diff. [%]

CoV-SSI MTL-DNN Rel.
Diff. [%]

SOBI Rel.
Diff. [%]

1 2.87 2.88 0.14 2.86 0.13 1.19 0.92 22.57 0.93 21.69 1.00
2 3.76 3.75 0.09 3.76 0.07 1.19 1.21 −2.12 1.22 −2.34 1.00
3 4.52 4.47 −0.62 4.53 −0.61 1.86 1.08 42.07 1.04 44.22 1.00
4 5.05 5.05 −0.30 5.03 −0.23 1.29 1.12 13.14 1.10 14.88 1.00
5 5.31 5.37 −0.56 5.36 −0.58 2.50 1.30 48.07 1.34 46.14 1.00
6 6.13 6.10 0.36 6.12 0.21 1.28 1.08 15.44 1.06 16.95 1.00
7 6.42 6.37 −0.25 6.38 −0.42 2.12 2.03 4.49 1.45 31.73 1.00
8 6.81 6.74 −0.49 6.85 −0.32 2.50 1.94 22.16 2.05 17.85 1.00
9 7.24 7.22 0.07 7.24 −0.24 1.43 1.63 −13.92 1.31 8.72 1.00
10 8.30 8.15 −0.09 8.32 −0.09 1.39 1.05 24.18 1.07 22.84 1.00
11 9.51 9.56 −0.97 9.53 −0.88 1.57 1.09 30.29 1.05 32.84 1.00

Figure 12. Mode shapes of the Méndez-Núñez Bridge estimated by the developed MTL-DNN model

multipliers serve as the input features of the FNN, while the
output consists of the modal signatures (resonant frequen-
cies and mode shapes).

The FNN architecture, shown in Fig. 13, is defined fol-
lowing a modular structure to simultaneously predict both
the frequencies and mode shapes, while accounting for the
unique characteristics of each mode shape. It begins with
an input layer for the l stiffness multipliers ki, followed by
several fully connected (dense) layers with tangent hyper-
bolic activation functions to capture complex dependencies
between the input parameters and the modal signatures.
The network then branches into specialized paths: one for
predicting the natural frequencies fj (j = 1, . . . , n, where
n = 11 for this case study), and another set of n indepen-
dent blocks, each dedicated to predicting a specific mode
shape. The output layers of the latter branches represent the

modal displacements at the m monitored degrees of freedom
(DOFs) (m = 10 in this case study).

Assuming the stiffness multipliers ki can vary within
the range [0.7, 1.1], the Latin Hypercube Sampling (LHS)
approach implemented in MOVA was used to generate a
training dataset of 2048, respectively, and the corresponding
modal properties were extracted by Monte Carlo simulation
of the forward FEM.

The neural network was trained for 1,000 epochs, with
15% of the 2048 training samples used for testing. A custom
loss function was defined, accounting for the unweighted
sum of the squared errors in frequencies and 1 − MAC
values. The hyperparameters of the model were selected
after parametric analyses, controlling the convergence of
the loss function in the training and testing datasets and
the global accuracy in terms of relative errors in frequency

21425007-12 BER Open: Int. J. Bridge Eng., Manage. Res.

BER Open: Int. J. Bridge Eng., Manage. Res., 2024, 2(1): 21425007



Figure 13. Architecture of the FNN for the generation of an AI-driven DT for the Méndez-Núñez Bridge

Figure 14. Neural Network training and test results. (a) Training and validation loss over 1000 epochs. (b) Comparison
between predicted frequencies fpred and actual frequencies freal. (c) MAC between the estimated mode shapes by the DT,

ϕDT, and the forward FEM, ϕFEM

and MAC values compared to the results obtained by the
forward FEM. Based on these analyses, the Adam adap-
tative optimizer was used with an initial learning rate of
10−4 and a momentum value of 0.98. A batch size of 16
samples was used for training, with samples shuffled at each
epoch. The convergence of the loss function is depicted in
Fig. 14a, indicating rapid convergence beyond epoch 150,
with strong performance both in the training and the testing
sets. To further evaluate the FNN’s performance, an inde-
pendent validation dataset of 1024 samples was used. For
this dataset, Fig. 14b compares the predicted frequencies fDT

from the neural network with the FEM evaluations fFEM ,
while Fig. 2c presents the MAC values, MAC(ϕDT , ϕFEM),
between the predicted modes ϕDT and the FEM estimates
ϕFEM . Notably, the Pearson coefficient of determination (R2)
for each mode’s frequencies exceeds 99%, and the MAC
values exceed 0.999, demonstrating that the neural network
accurately replicates the dynamic behavior of the FEM,
effectively serving as an SM. It is important to emphasize
the significant advantages in computational efficiency. While

the FEM in SAP2000 requires approximately 3.5 seconds for
a single linear modal analysis (4.5 seconds, including data
post-processing and data transfer between MATLAB and
SAP2000), the trained FNN completes the same task in just
0.01 seconds (a reduction of 99.71%).

Once trained, the AI-driven DT was used for continu-
ous system identification of the Méndez-Núñez Bridge. For
illustrative purposes, the modal properties extracted by CoV-
SSI, using the same control parameters as those previously
reported in Section 5.1, from September 27, 2023, to October
18, 2024, were used for inverse model calibration. The first
eleven modes were consistently identified during this period,
with identification success ratios above 95%, except for the
fifth mode, which had a lower success ratio of 57%. On this
basis, the inverse model calibration followed the formulation
introduced earlier in Section 4, considering the resonant
frequencies and mode shapes extracted from every 30-min
ambient acceleration record (921 acquisitions in total). An
autoregressive model using MATLAB’s fillgaps function and
a previous interpolation model were applied to fill in the
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Figure 15. Continuous system identification of the Méndez-Núñez Bridge using an AI-driven digital twin (DT) from
September 27th, 2023, to October 18th, 2024 (921 identifications)

missing frequencies and mode shapes, respectively. For the
cost function, the mean relative errors in frequency and 1 −
MAC values were considered, with weighting coefficients
α = 1, β = 1, and η = 2. The resulting optimization prob-
lems were solved using PSO (40 particles and 90 iterations).
Notably, despite the adopted large number of particles and
iterations in the inverse calibration to ensure convergence to
the global minimum, each system identification took only
about 8 seconds, thanks to the high computational efficiency
of the AI-driven DT.

The time series of stiffness multipliers identified from the
AI-driven DT for the Méndez-Núñez Bridge, along with the
mean environmental temperature, experimentally identified
resonant frequencies, and predictions from the inverse-
calibrated DT, are shown in Fig. 15 for the monitoring
period from September 27, 2023, to October 18, 2024 (921
identifications). It is interesting to note that the daily oscil-
lations observed in the time series of resonant frequencies
translate into fluctuations in the stiffness multipliers. Specif-
ically, similar to the resonant frequencies, all the stiffness
multipliers exhibit negative correlations with environmental
temperature (i.e., decreasing temperatures tend to make the
structure respond in a stiffer manner), a behavior commonly
observed in reinforced concrete bridges. Note that the DT
can replicate the daily oscillations in the resonant frequencies
with considerable accuracy, with error levels consistent with
those reported in the initial FEM calibration in Table 1.
Nevertheless, note in Fig. 15 that some parameters reach the
upper definition limit (1.10) for some identifications despite
the inclusion of the regularization term (R(x)). This may
indicate ill-conditioning issues or suggest that the upper
definition limit is insufficient to capture the full environ-
mental variability of the modal signatures. Nevertheless, it

is important to emphasize that these results are presented
with the sole purpose of illustrating the potential of the
AI-driven DT for fast system identification. When applied
to damage identification, it may be preferable to minimize
EOC-related variability in the modal properties prior to the
system identification, for which a variation range of 0.7 ≤
ki ≤ 1.1 appears reasonable.

To shed some light on the influence of EOC on the
stiffness properties of the case study, Fig. 16 delves into
the correlations between environmental temperature and the
stiffness multipliers ki. Specifically, this figure presents the
coefficients of variation (CVs) of the fitting parameters,
along with the R2 values between the fitting parameters and
the environmental temperature. Notably, both the CVs and
R2 values exhibit certain patterns, with maximum values
occurring in the elements closest to the abutments and piers
1 and 4. This suggests the influence of temperature on the
joints at the abutments and possibly the bearings on the
piers. Moreover, while the CV values exhibit considerable
symmetry, as expected from a linear sensitivity analysis, the
R2 values are notably higher in the first pier. This asymmetry
may point to uneven solar radiation, potentially due to the
proximity of a twin bridge, which causes the south edge of
the bridge to be more exposed than the north. Although
further investigation is beyond the scope of this study, future
work could consider including the stiffness properties of
the supports as fitting parameters to better understand the
temperature’s impact on the bridge’s structural behavior.
Furthermore, the generation of synthetic damage data, pos-
sibly using the forward FEM in Fig. 8 or an independent,
more realistic FEM, will be conducted to assess the ability
of the developed AI-driven DT for damage localization and
quantification.
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Figure 16. Correlation analysis between stiffness multipliers ki and mean environmental temperature

Conclusions

This work has presented a comprehensive software plat-
form called MOVA/MOSS, implemented in a modular
architecture that integrates AI models with high flexibility.
Specifically, AI is employed to alleviate the computational
burden in the most computationally intensive stages of the
SHM process as a statistical pattern recognition problem.
This includes feature extraction using automated OMA and
the generation of structural DTs for continuous supervised
damage identification.

The potential of the developed AI functionalities has
been illustrated through a real-world instrumented bridge:
the Méndez-Núñez Bridge in Granada, Spain. In the fea-
ture extraction phase, a deep multi-task learning neural
network embodying the principles of multi-frequency band
SOBI has been implemented, demonstrating high accuracy
in modal estimates with almost negligible computational
burden. Additionally, a structural DT defined through a
deep feedforward NN has been designed and implemented to
bypass a computationally intensive FEM of the bridge. The
developed DT has been used to conduct continuous system
identification, as well as to interpret the influence of envi-
ronmental temperature on the intrinsic local stiffness of the
bridge. The developed AI tools achieve computational time
reductions of 98.90% and 99.71% in the modal identification
(from 9 minutes and 44 seconds using CoV-SSI to 4.44 sec-
onds using the proposed MTL-DNN model) and the FEM
evaluation (from 3.53 seconds using the forward FEM to
0.01 seconds using the proposed FNN model), respectively.
Notably, the latter enables the inverse calibration of twenty
fitting parameters in just 8 seconds. Overall, the presented
results evidence the potential of AI to revolutionize SHM,

offering vast potential for the widespread adoption of SHM
techniques at regional or national scales.
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